
Compilation Techniques for MultimediaProcessorsAndreas Krall and Sylvain LelaitInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8A{1040 Wienfandi,sylvaing@complang.tuwien.ac.atAbstractThe huge processing power needed by multimedia applications has led to mul-timedia extensions in the instruction set of microprocessors which exploit sub-word parallelism. Examples of these extended instruction sets are the VisualInstruction Set of the UltraSPARC processor, the AltiVec instruction set of thePowerPC processor, the MMX and ISS extensions of the Pentium processors,and the MAX-2 instruction set of the HP PA-RISC processor. Currently, theseextensions can only be used by programs written in assembly language, throughsystem libraries or by calling specialized macros in a high-level language. There-fore, these instructions are not used by most applications.We propose two code generation techniques to produce native code usingthese multimedia extensions for programs written in a high level language: clas-sical vectorization and vectorization by unrolling. Vectorization by unrolling issimpler than classical vectorization since data dependence analysis is reducedto acyclic control ow graph analysis. Furthermore, we address the problem ofunaligned memory accesses. This can be handled by both static analysis anddynamic run time checking. Preliminary experimental results for a code gen-erator for the UltraSPARC VIS instruction set show that speedups of up to afactor of 4.8 are possible, and that vectorization by unrolling is much simplerbut as e�ective as classical vectorization.Keywordscompiler, multimedia processors, vectorization, loop unrolling
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1 IntroductionNowadays multimedia applications requiring high processing power are widelyused. The trend of using multimedia will increase in the future. Current proces-sors do not have the capabilities for e�cient handling of multimedia information(such as audio/video data). Therefore, computer architects try to provide solu-tions for the fast growing market of media processing. A very promising solutionis the use of special instruction sets aimed at exploiting the subword parallelismavailable when handling speci�c multimedia data. These special instruction setscan either be implemented by special processors [6] or existing instruction setscan be enhanced by a multimedia instruction set. Four widely used processorscurrently o�er multimedia extensions: the UltraSPARC with the Visual Instruc-tion Set [9], the PowerPC with the AltiVec extension [13], the Pentium with theMMX extension [8] and the HP PA-RISC with the MAX-2 instruction set [7].The present means for exploiting this new functionality are not yet satis-factory. Programmers have to code in assembly language, use provided systemlibraries or call macros in the high-level code. All these solutions have draw-backs, among which portability problems and high cost of software developmentare the more obvious. A better solution would be to compile a program codedin a high-level language into multimedia instructions. The code produced wouldbe more e�cient and safe. Furthermore, the new functionalities of such proces-sors can also improve the performance of other applications by exploiting theirparallelism in a better manner.The following example illustrates a C implementation of the vector product,which forms the inner loop of many signal-processing operations:int dotprod(int n, short int *a, short int *b) {int i, sum;for (sum = 0, i = 0; i < n; i++)sum += a[i] * b[i];return sum;}Using the VIS-instruction set of the UltraSPARC processor four 16-bit valuescan be hold in a 64-bit variable (ad4x16 and bd4x16). Two 32-bit sized resultvalues can be hold in a 64-bit variable (rdh2x32 and rdl2x32). A rewrittenC-program using VIS-instruction macros for the inner loop (see �gure 1) canexecute the dot vector product 7.5 times faster for an aligned vector of length1024. From the complexity of this code it is evident, that such transformationsshould be done by the compiler, not by the programmer.We are developing a research compiler which translates C source programsinto native code for the SPARC processor exploiting the VIS instruction set.Our compiler is based on the CoSy compiler generation framework from ACE.This framework includes a front end with all classical optimizations like con-stant propagation, common subexpression elimination, strength reduction, loopinvariant code motion and similar techniques and the BEG [5] code generator-2



generator with tree pattern matching instruction selection, graph-coloring reg-ister allocation and instruction scheduling. The extensions for exploiting theVIS instructions are described in the following sections. Classic vectorization ispresented in section 3, alignment problems are handled in section 5 and vector-ization by unrolling is described in section 6.2 Related WorkLittle published work exists which directly deals with compilation techniquesfor multimedia processors. Cheong and Lam have given a presentation at thesecond SUIF compiler workshop [4]. The SUIF vectorizer is used in a twophase source to source optimizer for multimedia instruction sets. In the �rstphase parallel loops are identi�ed, and instructions in the the loop bodies areconverted to vector instructions working on in�nite length vectors. In the secondphase, the vector operations are transformed into function calls of SPARCs VISinstructions. The article also describes their approach for handling unalignedload and stores of vectors.In [12] Govindarajan presented an implementation of a vectorizing compilerfor the MMX extensions of the Pentium processors. The compiler is based onthe SUIF compiler using C source to source translation with inline assemblyinstructions. The compiler identi�es data parallel section of code. It enhancesthe scope of applications by performing code transformations like strip mining,scalar expansion, grouping and reduction, loop �ssion and distribution. Thecompiler prototype gives performance improvements up to a factor of 7.Multimedia instruction sets put multiple values in a register and operate onall values at the same time. Therefore, a multimedia processor can be viewedeither as a VLIW processor with a set of combinable operations, or as a vec-tor processor with very short vectors. Work on vector processors took placemainly at the end of the 80's and the beginning of the 90's. Concerning vectorprocessors, Allen and Kennedy [2] developed global register register allocationtechniques for Fortran90 on vector processors. They used program transforma-tions to increase data locality and vector operations are modi�ed to be executedwithout problem on the processor. The vector operations must be subdividedinto sections that �t the hardware of the target machine. They describe section-ing methods like strip mining, sectioning transformations such as loop reversal,input prefetching, loop splitting, loop interchange and loop fusion. Prefetchingis very useful to optimize data locality as well.A good introduction into compilation techniques for parallel computing arethe books by Zima [15] and Wolfe [14]. A survey on optimizations techniquessuited for vector processors, including the optimizations described above, hasbeen done in [3].
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3 Classic vectorizationWhen viewing a multimedia processor as a vector processor with short �xedlength vectors, techniques known from classic vectorization can be used to gen-erate code for multimedia instructions. In our compiler this is accomplished inmany smaller phases (called engines in CoSy terminology) executed sequentially.� loop analysis� loop normalization� scalar expansion� dependence analysis� vectorization� alignment management� strip mining� constant expansion� lower iteration space� lower alignment� instruction selection and register allocationLoop analysis determines loops and loop normalization adjusts the itera-tion count to start at 0 by a step of 1. Scalar expansion transforms a scalarvariable used inside the loop into a vector. Dependence analysis computes thedata dependence graph for a loop. Vectorization transforms the loop body intovector instructions. Constant expansion changes scalar constants to vector con-stants. Alignment management handles unaligned vector load/stores. Stripmining reduces variable length vectors to word length vectors. During instruc-tion selection multimedia instructions are used for the short vector operationsand oating point registers are allocated to the vectors.3.1 Data dependence analysisThe data dependence analysis is based on the Janus system by Sogno [11].Janus contains an inequation solver over the integers, to be used for dependencecomputing in automatic parallelization. The input to the solver is a systemof linear inequations resulting from the data dependence problem from loopparallelization. This system represents the set of constraints which have to beveri�ed by the variables of the loop. The output gives information on the datadependence direction vectors which are compatible with the input system. Theresult of the dependence analysis is the possibly cyclic data dependence graphof the loop. 4



3.2 VectorizationVectorization is done using Allen and Kennedys algorithm for vector code gen-eration [1, 2]. Input to vectorization is the loop with its corresponding datadependence graph. The algorithm computes the strongly connected compo-nents in the data dependence graph and recursively vectorizes the statementsif possible. The result is a vectorized loop in intermediate representation withassignments replaced by vector assignments. Following example demonstratesvectorization of a simple loop.short int a[1000], b[1000], c[1000];for (i = 0; i < 1000; i++)a[i] = b[i] + c[i];is transformed intoshort int a[1000], b[1000], c[1000];a[0:999] = b[0:999] + c[0:999];3.3 Strip miningThe Sparc processors can store up to four shorter data values in one register.Therefore, the vectorized loop using in�nite length vectors has to be transformedusing only �xed length vectors by strip mining. The size of the vector andthe number of the elements of the vector depends on the type of the data.The following example shows strip mining of the previous vectorized loop usingvectors of length four.short int a[1000], b[1000], c[1000];a[0:999] = b[0:999] + c[0:999];is transformed intoshort int a[1000], b[1000], c[1000];for (i = 0; i < 1000; i += 4)a[i:i+3] = b[i:i+3] + c[i:i+3];3.4 Lowering of the Iteration SpaceIn order to ease the code generation process, several data are computed anddirectly attached as attributes to the instructions. An attribute containing thenumber of parallel operations, NumOp, is added to the statement. It helps tochoose between single or double precision versions of VIS instructions. Anotherattribute, FromType, containing the type of the array elements of the vector5



instruction is computed and propagated to the operators of the instruction. Itis used to choose between 16- or 32-bit versions of the VIS instructions.Furthermore, to be able to generate partial store instruction, a new inter-mediate representation operator, edge, is introduced. It is used for the lefthand-side of vector statements when vectors smaller than the word size have tobe stored. An example is the tail of a big vector which is not a multiple of thewordsize.The iteration space itself is removed, because it is not needed anymore duringthe code generation process itself (BEG). Let us take the following example afterstrip-mining:short int a[23], b[23], c[23];for (i = 0; i < 20; i+=4)a[i:i+3] = b[i:i+3] + c[i:i+3];a[20:22] = b[20:22] + c[20:22];is lowered into:for (i = 0; i < 20; i+=4)a[i] = b[i] + c[i] {NumOp = 4, FromType = short int};mask = edge(a[20], a[22]) ;a[20] = b[20] + c[20] {NumOp = 3, FromType = short int};store_mask(a[20], a[22]);The vector statement performing the remaining 3 operations outside of theloop is translated into several instructions. The �rst one computes a mask for apartial store instruction. All 4 elements are loaded by the addition statement,and the addition itself is performed on all 4 elements. The correct result isachieved by the partial store which writes only 3 elements.3.5 Code Generation for Conditional StatementsIn the case of conditional statements in the loop body, the vectorizer introducesmasks in the iteration space of each vector statement. A vector comparisonproducing a mask is generated for each atomic condition. The atomic masksare combined by logical operations. This mask is then used immediately asoperand of a partial store, or, if the vector assignment already needed a partialstore, the mask is combined with the mask produced by the edge statement.This �nal mask is then used by the partial store. The following loopshort int a[1000], b[1000], c[1000];for (i = 0; i < 1000;i++)if (b[i] > c[i])a[i] = b[i] + c[i]; 6



is �rst transformed into the following vector statement:short int a[1000], b[1000], c[1000];for (i = 0; i < 1000; i = i+4)a[i:i+3] = b[i:i+3] + c[i:i+3] {b[i:i+3] > c[i:i+3]};During the lowering step a vector compare instruction is introduced whichproduces a mask. The dependent partial store takes the produced mask asoperand.short int a[1000], b[1000], c[1000];for (i = 0; i < 1000; i = i+4) {mask = b[i] > c[i]; {NumOp = 4, FromType = short int}a[i] = b[i] + c[i]; {NumOp = 4; FromType = short int}store_mask(a[i], a[i+3]); /* partial store */3.6 Instruction selection and register allocationThe code generator-generator BEG is controlled by tree pattern matching ruleswhich describe the instruction selection. The operators have attributes whichcontain the type of the operands. Depending on the operands rules are selectedwhich either generate scalar code or multimedia instructions. Vector operandsare assigned to oating point registers which are allocated automatically by thegraph coloring register allocator.4 Loop TransformationsSeveral loop transformations help in vectorizing loops. Vectorization is simplerif the loop body contains only one assignment statement. Loop distributionsplits a loop with more statements into several loops with one statement. Loopfusion can then be used to merge these split loops again into one loop after stripmining has been applied. Sometimes it would be more useful to vectorize theouter loop in a loop nest. Loop interchange is then applied to exchange theouter loop with the inner loop.4.1 Loop NormalizationLoop normalization ensures that the iteration space of the loops is regular. Fora C compiler the lower bounds are set to 0 and the step is set to 1. The indexexpressions and the lower bounds are modi�ed accordingly. The following smallloop with lower bound 2short int a[1000], b[1000], c[1000];7



for (i = 2; i < 1000; i++)a[i] = b[i] + c[i];is transformed into:short int a[1000], b[1000], c[1000];for (i = 0; i < 998; i++)a[i+2] = b[i+2] + c[i+2];4.2 Scalar and Constant ExpansionScalar expansion is needed when a scalar variable appears in a vector expres-sion. The scalar variable is copied to each element of a temporary vector whichreplaces the scalar variable in the vector expression.Constant expansion is a \special case" of scalar expansion. It is neededfor handling constants in vector statements. In the case of the UltraSPARCprocessor, VIS instructions can only handle registers as operands (no immediatevalues). Therefore scalar constants are replaced by constant arrays allocated toregisters.The following loop demonstrates scalar and constant expansion:short int a[1000], b[1000], c;for (i = 0; i < 1000; i++)a[i] = b[i] + c + 2;The integer constant is replaced by an array access to a constant array(const) which is initialized in its declaration. The scalar constant c is alsoreplaced by an array access. Initialization of the array c4 is made just after thedeclaration. The size of the new arrays is computed according to the number ofoperations performed in parallel. Thus the loop is transformed into:short int a[1000], b[1000], c, c4[4], const[4] = {2, 2, 2, 2};c4[0] = c; c4[1] = c; c4[2] = c; c4[3] = c;for (i = 0; i < 1000; i += 4)a[i:i+3] = b[i:i+3] + c4[0:3] + const[0:3];5 Alignment ProblemsThe SPARC like all other RISC processors allows loading and storing of shortvectors only if they are aligned correctly (on a 4 byte boundary for 4 bytevectors and on an 8 byte boundary for 8 byte vectors). The VIS instructionset added instructions for partial load and store and instructions for merging8



partial loaded data. Special instruction sequences are needed to implement anunaligned load (4 instructions) or an unaligned store (up to 12 instructions).Due to separate compilation of C and aliasing of pointers static alignmentanalysis is expensive and imprecise [10]. Therefore, the prototype compilerincludes only a simple analysis which detects arrays declared as static and alignsthem on 8 byte boundaries during the lowering phase.If the alignment of accesses cannot be proven statically, dynamic alignmentchecks are inserted into the code. Depending on the result of the checks eitherfast vectorized code or slower non vectorized code is used. The alignment checkerscans all operands of the instructions in the loop body and { depending on acompiler switch and the number of operands { either generates a single test withtwo code versions or a whole tree with 2n�1 code versions (n being the numberof operands in the loop).In the following example two code versions are generated. The conditionincludes a test over all operands of the loop.short int *a, *b, *c;for (i = 0; i < 1000; i += 4)a[i:i+3] = b[i:i+3] + c[i:i+3];is transformed intoshort int *a, *b, *c;if ((a & 7) || (b & 7) || (c & 7))for (i = 0; i < 1000; i += 4) {a[i] = b[i] + c[i];a[i+1] = b[i+1] + c[i+1];a[i+2] = b[i+2] + c[i+2];a[i+3] = b[i+3] + c[i+3];}elsefor (i = 0; i < 1000; i += 4)a[i:i+3] = b[i:i+3] + c[i:i+3];An unaligned vector load only takes 4 instructions. It makes sense to opti-mize loops where one or two vectors are unaligned. If code size is unimportant(controllable by a compiler switch), di�erent versions for partially unalignedloops are supported. We do not generate code for unaligned vectors which arestored to memory. The following example shows a code tree with 5 di�erentversions for unaligned array accesses.short int *a, *b, *c;if (a & 7) non vectorized loopelse if (b & 7) 9



if (c & 7) b and c unalignedelse b unalignedelse if (c & 7) c unalignedelse a, b and c aligned6 Implementation of vectorization by loop un-rollingThe implementation of vectorization by loop unrolling is again done in a se-quence of phases implemented by engines of the CoSy framework. To keep thedevelopment e�ort of these engines smaller many engines of the classical vector-ization are reused. An example is the engine which does dependence analysisand computes the data dependence graph. For vectorization by unrolling mostof the analysis could be done using acyclic analysis, but reusing the old engineswas simpler.� loop analysis� compute unrolling degree� loop unrolling� dependence analysis� dependence veri�cation� generation of vector instructions� alignment management� lower iteration space� lower alignment� instruction selection and register allocationThe idea of this method is to avoid a costly dependency analysis and theentire vectorization process. The loop is �rst unrolled the correct number oftimes depending on the type of the operands. In the example below the loop isunrolled 4 times for short int operands, so that the �nal operands �t into the 64-bit registers. Then the loop body is inspected and acyclic instruction schedulingis performed in order to have all instances of the same loop instruction groupedtogether. Then these instances are replaced by a vector instruction operatingdirectly on the correct number of instances. The last step is the lowering phaseof the former method.Let us detail this method on a simple example. The �rst step is to computethe unrolling degree of the loop. This is done by scanning each operand of theloop body instructions. Depending on their type, the unrolling degree is set to10



2 or 4. For instance if they are all 8 or 16-bit data types, then the loop canbe unrolled 4 times, if one of them is a 32-bit data type, the loop can only beunrolled twice.short int a[1000], b[1000], c[1000];for (i = 0; i < 1000; i++)a[i] = b[i] + c[i];is transformed intoshort int a[1000], b[1000], c[1000];for (i = 0; i < 1000; i += 4) {a[i] = b[i] + c[i];a[i+1] = b[i+1] + c[i+1];a[i+2] = b[i+2] + c[i+2];a[i+3] = b[i+3] + c[i+3];}After the loop has been unrolled, a data dependence graph is built to checkthe validity of the forthcoming transformations. There should not exist any trueor output dependence between di�erent instances of the statements of the loopbody. Once this has been veri�ed, vector statements are generated directly byremoving all the instructions of the loop body but the �rst unrolled iteration,and by converting them into vector statements.short int a[1000], b[1000], c[1000];for (i = 0; i < 1000; i += 4) {a[i] = b[i] + c[i];a[i+1] = b[i+1] + c[i+1];a[i+2] = b[i+2] + c[i+2];a[i+3] = b[i+3] + c[i+3];}is transformed intoshort int a[1000], b[1000], c[1000];for (i = 0; i < 1000; i += 4)a[i:i+3] = b[i:i+3] + c[i:i+3];Similar to dynamic alignment checking we are working on dynamic datadependence checking. If static data dependence analysis does not give preciseresults for a possible dependence of load and stores, but gives enough informa-tion about the increment values of the induction variable, a check for overlappingvector loads/stores can be done before the execution of the loop. A drawback isthat this check is more costly both in run time and code size than the dynamicalignment check. 11



7 ResultsThe previous presented algorithms have been implemented in the CoSy com-piler framework and we evaluated both the implementation complexity and thespeedup gained by using multimedia instructions for short integer data loops.The complexity has been evaluated counting the number of source codelines of each engine (see table 1). Classical vectorization has about one and ahalf times the number of lines that vectorization by unrolling has, despite thefavoring of classical vectorization by reusing the complex data analysis engine.Table 2 gives the execution times and the speedups for some benchmarkprograms. viscc - our compiler which generates VIS multimedia instructions - iscompared with the standard compiler which does not use these instructions. Aspeedup greater than 4 is possible since the standard compiler does not unrollthe loops and the loop overhead is reduced to one quarter. The third bench-mark shows the speedup which is possible when one operand is unaligned dueto an index variable shift. The last benchmark shows some speedup for a condi-tional statement. In that case, the speedup depends on the distribution of theconditions. In the normal version, the computation a[i] = b[i] + c[i+1] is onlyperformed if the test is true. In the vectorized version, this instruction is alwaysexecuted. The highest speedup is reached if the test is always true. Both clas-sic vectorization and vectorization by unrolling produce exactly the same code.Therefore, only the results for the unrolling vectorizer are presented.8 Conclusion and future workThe experimental results show that exploiting the UltraSPARC VIS instructionset in a code generator gives speedups of up to a factor of 4.8. Vectorization byunrolling is much simpler but as e�ective as classical vectorization.We are working on vectorization for loop bodies with conditionals and morethan one basic block. For this problem vectorization by unrolling is much morepromising than the classical vectorization.AcknowledgementWe express our thanks to David Gregg for his comments on earlier drafts of thispaper. We would also like to thank the reviewers for their helpful suggestions.Sylvain Lelait was supported by the FWF grant P-12574-INF (Austrian ScienceFoundation).References[1] Randy Allen and Ken Kennedy. Automatic translation of FORTRAN pro-grams to vector form. ACM TOPLAS, 9(4):491{542, October 1987.12
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