
 .
Abstract— Large amount of software for embedded digital signal

processing systems is written in assembly language. Software
pipelining of loops is necessary to exploit the full potential of Very
Long Instruction Word (VLIW) processors. For both understanding
software pipelined loops and reverse compiling them to high level
language code the software pipelined loops must be de-pipelined back
to the original loops. In this paper we present technique for software
de-pipelining of nested loops, demonstrate it with an example and
evaluate the benefits of some software pipelined nested loops.

Keywords—software pipelining; de-pipelining; nested loops;

DSP.

I. INTRODUCTION

EVERSE compilation techniques [4, 6, 13] have been
applied to many areas such as porting legacy software

written in assembly language to new architectures, link-time
optimizers, and high-level debuggers [8]. Some key problems
such as unpredication and unspeculation [20], reconstructing
control structures [21], resolution of branch delays [2]-[3] and
software de-pipelining [22]-[24] have been tackled recently.

Software pipelining [14] is a loop parallelization technique
used to speed up loop execution. It is widely implemented in
optimizing compilers for very long instruction word (VLIW)
and superscalar processors such as IA-64, Texas Instruments'
C6X and StarCore’s SC140 DSP that support instruction level
parallelism. Because nested loops take a large portion of
execution time in scientific programs and DSP applications,
software pipelining of nested loops have been extensively
investigated [10, 15, 16, 17, and 18].

Software de-pipelining [22]-[23] is the reverse of software
pipelining. This technique involving only single loops has been
incorporated into a reverse compiler for the Texas Instruments
C6X architecture [2]. We extend this technique to handle
nested loops in digital signal processing (DSP) applications.
This paper first presents a formal description of software
pipelining and de-pipelining. We then analyze the existing
software pipelining techniques and present our software de-
pipelining technique for two-level nested loops. To illustrate
the process, we present a working example. Finally, we
provide our experimental results.

Nerina Bermudo and Andreas Krall are with Christian Doppler Laboratory
Insitut für Computersprachen – Technische Universität Wien,Vienna, Austria

(email: {nerina, andi}@complang.tuwien.ac.at)
Bogong Su is with Dept. of Computer Science, William Paterson University,

Wayne, NJ, USA (phone: 1-973-720-2973; fax: 1-973-720-2979; email:
sub@wpunj.edu)

Jian Wang is with LTE Software Design, Ericsson Canada, Ottawa, Canada
(email: jian.z.wang@ericsson.com)

II. FORMAL DESCRIPTION OF PIPELINING AND
DE-PIPELINING OF TWO-LEVEL NESTED LOOPS

Data dependence is one of the major constraints for loop
transformation such as software pipelining and de-pipelining. It
is essential to understand how we represent data dependence of
two-level nested loops.

Each iteration of a two-level nested loop is identified by its
index vector),(21 ii , where 1i and 2i are the values of the
outer and inner loop index, respectively. Thus, an instance of
an operation op in a two-level nested loop is represented
as)),(,(21 iiop . For any two instances,)),(,(211 iiop
and)),(,(212 jjop , if there is a data dependence between them,
then we say that there is a data dependence between 1op and

2op with a distance vector of (d1, d2), where dk = ik – jk for k
= 1 or 2. Like a data dependence in a single-level loop, a delay
δ is associated with each data dependence in a nested loop.

The data dependence graph (DDG) of a two-level nested
loop, therefore, is represented as (O, E, (d1, d2), δ), where O is
the node (operation) set, E is the (data dependence) edge set,
(d1, d2) and δ are the distance vector and the delay,
respectively, on each data dependence edge. Although delay δ
is associated with an edge in the DDG, it is actually the
execution time of the source operation op, we sometimes also
use δ(op); δ(op) and δ(e) can be exchangeable used when op is
the source operation of dependence edge e. However, DDGs
with distance vectors are inconvenient in use during software
pipelining or loop de-pipelining. We proposed linearized
DDGs to represent data dependences of the two-level nested
loops.

Definition 1 Given a two-level nested loop and its DDG, G
= (O, E, (d1, d2), δ), the linearized DDG of G is defined as
LG = (O, E, ld, δ), where, for each edge e, ld(e) = n2*d1(e)+
d2(e), and where n2 is the trip count of the inner loop;

Using the concept of linearized DDG, an instance of an
operation op in a nested loop,)),(,(21 iiop , can be also
represented as (op, li), where li = n2*i1 + i2. li is called the
linearized index of the index vector (i1, i2). It is a one to one
mapping between an index vector and its corresponding
linearized index.

Now we are ready to present the formal description of loop
schedule, software pipelining and de-pipelining for two-level
nested loops.

Definition 2 Given a two-level nested loop and its DDG, G
= (O, E, (d1, d2), δ), generate G's linearized DDG, LG = (O, E,
ld, δ). We define loop schedule σ as a mapping function from
O x N to N where N is a nonnegative integer set. σ(op,li)
denotes the cycle number in which the instance of operation op
with the linearized index li is issued for execution. Note that σ

Software De-Pipelining for Nested Loops
Nerina Bermudo, Andreas Krall, Bogong Su, and. Jian Wang

R

International Journal of Computer Science and Electronics Engineering (IJCSEE) Volume 1, Issue 1 (2013) ISSN 2320–4028 (Online)

39

mailto:sub@wpunj.edu

is a valid loop schedule if and only if the following three
conditions are satisfied:

(1) resource constraint: in any cycle, there must be no
hardware resource conflict;
(2) data dependence constraint: for any data dependence
edge e = (op1,op2) and for any linearized index j,
 σ(op1, j) + δ(e) ≤ σ(op2 , j + ld(e));
(3) cyclicity constraint: σ must be expressible in the form of
a loop, that is, there must be an integer II, for any operation
op in the nested loop and for any linearized index j>1,
 σ(op, j) = σ(op, j-1) + II*(j-1), II is called the
linearized initiation interval.

Definition 3 Software pipelining of a nested loop is to find a
valid loop schedule with minimum linearized initiation
interval.

Definition 4 Given a nested loop and its DDG,
G = (O, E, (d1, d2), δ), generate G's linearized DDG, LG =

(O, E, ld, δ). De-pipelining is to find a valid loop schedule σ
which satisfies the following two conditions:

(1) for any operation op and for any linearized index j,
σ(op, j) + δ(op) ≤ σ(op , j +1);
(2) for any two operations 1op and op2, and for any
linearized index j, σ(op1, j) + δ(op1) ≤ σ(op2 , j +1);

Definition 5 VLIW Instruction VIi = {opi1, opi2, …, opin |
all n instructions can be executed at the same CPU clocki
without any resource conflict }

The goal of software pipelining is to speed up the execution
time of a nested loop. To do so, software pipelining overlaps
operations from different iterations to exploit instruction level
parallelism. De-pipelining, however, is to execute the loop
sequentially, i.e., one iteration after another. Thus, in a de-
pipelined loop, operations from different iterations will not be
overlapped and the loop-carried dependence is automatically
satisfied.

Different approaches have been proposed to software
pipeline a two-level nested loop. It is important that we should
first check if a two-level nested loop is software pipelined. The
idea behind our method is to verify the loop-carried data
dependences in the linearized DDG. If the dependences are
broken, the nested loop is likely to be software pipelined.

III. EXISTING NESTED LOOP

SOFTWARE PIPELINING APPROACHES

So far all software pipelining techniques of nested loops are
for two level nested loops only. Most are applied to VLIW
architectures such as the Itanium and TIC6x DSP. They have
some common characteristics shown below.

The inner loop is software pipelined first for a better chance
of overlapping with instructions of the outer loop. Unrolling or
Unroll-and-Jam [5] of the inner loop is necessary before
software pipelining the outer loop [7, 19].

Outer loop software pipelining overlaps outer loop iterations
including the epilog and prolog of the inner loop with each
successive iterations of the outer loop [10, 15]. Performing
outer loop software pipelining often requires the use of large

number of registers. Because the number of available registers
is limited for most DSP processors, it is nearly impossible to
overlap the pipelined inner loop body with either the pipelined
inner loop body or prolog or epilog of preceding and
succeeding iterations. Fig.1 shows the concept of software
pipelining the outer loop. Fig. 1(a) is a software pipelined inner
loop. Fig. 1(b) presents an example from a real TI assembly
code; the prolog of a pipelined inner loop of the first iteration
of outer loop can be overlapped with the epilog of pipelined
inner loop of the second iteration of outer loop. Fig. 1(c) shows
the normal style of outer software pipelining in which some
parts of the second iteration are collapsed. By changing the
entry for the first loop iteration the space for the prolog can be
saved (see Fig. 1(d)).

Prolog

Epilog

Pipelined inner body

Pipelined inner bodyPipelined inner body

Prolog

Prolog
Epilog

Epilog

 (b) overlapping two iterations of outer loop

innerloop:

outerloop:

Pipelined inner body

Prolog

Prolog

Epilog

Pipelined inner bodyinnerloop:

outerloop:

Prolog
Epilog

 (c) outer loop software pipelining (d) a variation of outer
 software pipelining

Fig. 1 Software pipelining outer loop

Sometimes outer and inner loop levels are merged by
applying loop transformation techniques such as dovetailing
[25], and loop flattening [12]. In particular, TI’s conditionally
execute outer loop technique [19, 25] supported by predicate
registers makes the implementation of loop flattening easier
and more efficient. However de-optimizing loops optimized by
dovetailing or loop flattening is more complicated, our research
work focuses on software de-pipelining problems of DSP
processors.

IV. NEW NESTED LOOP DE-PIPELINING ALGORITHMS

Based on the above analysis of software pipelining of
nested loops we have extended our software de-pipelining
approach [22]-[23] to deal with nested loops, which have been
software pipelined as shown in Fig. 1 (c) and (d).

The nested loop de-pipelining algorithm has 12 phases:

(a) software pipelined
 inner loop

International Journal of Computer Science and Electronics Engineering (IJCSEE) Volume 1, Issue 1 (2013) ISSN 2320–4028 (Online)

40

1. Control flow graph CFG reconstruction and natural loop
analysis: Use natural loop analysis [1] from the given
segment of assembly code to find CFG, the entries of outer
loop and inner loop, the inner loop body and the end of
outer loop.

2. Software-pipelined loop checking: For each instruction
pair (opi, opj) in inner loop body, if opi data precedes opj
and the latency of opi ≥ the distance between opi and opj,
then the inner loop is software pipelined. Similarly, we can
check whether the outer loop is software pipelined.

3. Identification of the pre-area and post-area of the outer
loop: Pre-area contains the instructions before the inner
loop body, which includes the prolog of the software-
pipelined inner loop and the initialization parts of inner
loop and outer loop.
 Post-area contains the instructions following the inner

loop body which includes the epilog of the software-
pipelined inner loop; it may also include the duplicated
instructions of prolog of the software-pipelined inner loop.

4. Transformation of the space saving variation of outer
software pipelining: If the given software pipelined code is
a space saving variation as shown in Fig. 1(d), it must be
transformed to the normal style as shown in Fig. 1(c) first.

5. De-pipelining the outer loop: If the outer loop is software-
pipelined normally, remove those instructions in post-area
which are the copies of instructions in pre-area and adjust
the entry of outer loop to form the prolog of inner loop.

6. Live variable analysis: Search all last_instructions in the
inner loop, which contains all memory store instructions
and register-written instructions if those written registers
are live variables after inner loop exit

7. Identification of the prolog and epilog: Starting from the
inner loop entry search upward to all VLIW instructions
containing instructions that exist in inner loop body, the
highest VLIW instruction is the upper boundary of the
prolog. The lower boundary of the epilog is obtained in a
similar manner.

8. Prolog and Epilog recovery: If the prolog is collapsed,
unroll the inner loop body and check every instruction in
the unrolled copy; if it does not modify any part of the
machine state, then it is the collapsed instruction. Epilog
can be recovered in a similar manner.

9. Build LBDDG: In prolog and inner loop body, build a data
dependency graph called LBDDG.

10. Scheduling: From last_instructions using list scheduling,
arrange the partial order list of the critical path of LBDDG
in a bottom-up manner to get a sequential code, and then
insert the rest instructions in the non-critical path; finally
obtain a sequentialized code which is semantically
equivalent to the original software pipelined inner loop.

11. Inner loop replacement: Replace the software-pipelined
inner loop by its sequentialized code.

12. Outer loop scheduling: Build the data dependency graph
for all VLIW instructions beyond and after the
sequentialized inner loop respectively; then use list

scheduling to form the sequential code beyond and after
the sequentialized inner loop to form the final sequential
code.

Reference [24] presents the detail algorithms of each phase.

V. WORKING EXAMPLE

We have taken an assembly language version of a FIR
function as a working example to demonstrate our de-
pipelining technique on two-level nested loops. The unrolled
inner loop is shown in Fig. 2(a). The machine architecture is
similar to TIC62. However, for simplicity, we assume that all
branch, load, and multiplication instruction have only one
delay slot (latency is two clock cycles) and other instructions
have no delay slots. Fig. 2(b) shows its optimized assembly
code, the symbol “||” in front of an instruction indicates that the
instruction is executed in parallel with the one immediately
above it. All instructions executed in parallel belong to a single
VLIW instruction.

Fig. 2(c) is a new form for assembly code to explicitly
express the instructions that are executed in parallel, where
each row is a VLIW instruction. By using natural loop analysis
[1] we can find that this is a two level nested loop; where
outloop and loop are the entries of the outer loop and inner
loop respectively.

The length of the inner body is two because the latency of
branch instruction is two. By using the software-pipelined loop
checking, we find out that the inner loop has been software-
pipelined, because the LDH *++A5(4),A9 and MPY A7,A9,A7
are located in the first VLIW instruction of inner loop but the
LDH instruction writes register A9 which is read by MPY
instruction and LDH’s latency is two cycles. Fig. 2(c) also
shows the pre-area and post-area. Some instructions in pre-area
have copies (as shown with shadow) in post-area; this working
example is the type as Fig.1(c) shown. Similarly, by using the
Software-pipelined loop checking, we find out that the outer
loop has also been software-pipelined. Because in the
post_area, the LDH *++B6(4),A7 instruction writes register
A7 which is read by MPY A7,A9,A7, but the MPY instruction
is located earlier than the LDH instruction even LDH’s latency
is two cycles.

Fig. 2(d) is the result of De-pipelined outer loop. The
duplicated instructions in post-area have been removed. Fig.
2(d) also shows the prolog and epilog parts of software-
pipelined inner loop found in the Identification of the prolog
and epilog phase. In this simple example both prolog and
epilog are not collapsed. By using live variable analysis we
find that ADD A0, B5, A0 is the last_instruction. Fig. 2(e)
shows the LBDDG of the inner loop which is the result of the
Build_LBDDG phase. In Fig. 2(f) the inner loop is replaced by
a sequential loop which is semantically equivalent to the
software-pipelined loop from the Inner loop replacement
phase. Fig. 2(g) presents the final sequential code produced
from the Outer loop scheduling phase.

International Journal of Computer Science and Electronics Engineering (IJCSEE) Volume 1, Issue 1 (2013) ISSN 2320–4028 (Online)

41

void fir (short x[], short h[], short y[])
{

for (j=0; j<50; j=j+2)
{ sum=0;
 x0=s[j];
 for (i=0; i<64; i+=2)

 { x1=x[j+i+1];
h0=h[i];
sum+=x0*h0;
x0=x[j+i+2];
h1=h[i+1];
sum+=x1*h1; }

 y[j]=sum; }
}

short i, j; int sum; short x0, x1, h0, h1;

 (a) FIR C source code

 (c) Pre-area and Post-area

 (d) After de-pipelining outer loop

 (e) Building LBDDG of innerloop

 (b) FIR assembly code (f) After replacing inner loop (g) Final sequential
 assembly code

Fig. 2 Working example

SUB A4,4,B6 MV B4,A3
MVK 0x19,B1 ZERO A8
ADD A8,A4,A0
LDH *++B6(4),A7 ADD 2,A0,B4 SUB A3,4,A5 Pre-area
MVK 0x20,B0
ZERO A0
LDH *++A5(4),A9 LDH *B4++(4),B5

LDH *+A5(2),A3 SUB B0,1,B0
outloop LDH *++A5(4),A9 LDH *B4++(4),B5 MPY A7,A9,A7

LDH *+A5(2),A3 LDH *+B4(2),A7 MPY B5,A3,B5 SUB B0,1,B0
loop LDH *++A5(4),A9 LDH *B4++(4),B5 MPY A7,A9,A7 ADD A0,A7,A0 [B0] B loop

LDH *+A5(2),A3 LDH *+B4(2),A7 MPY B5,A3,B5 ADD A0,B5,A0 SUB B0,1,B0
MPY A7,A9,A7 ADD A0,A7,A0

LDH *++B6(4),A7 MPY B5,A3,B5 ADD A0,B5,A0 MVK 0x20,B0
LDH *++A5(4),A9 LDH *B4++(4),B5 ADD A0,A7,A0 Post-area

LDH *+A5(2),A3 ADD A0,B5,A0 SUB B1,1,B1
LDH *++A5(4),A9 LDH *B4++(4),B5 STH A0,*A6++(4) [B1] B outloop
LDH *+A5(2),A3 LDH *+B4(2),A7 ADD 4,A8,A8 ADD A8,A4,A0

 SUB A4,4,B6
|| MV B4,A3
 MVK 0x19,B1
|| ZERO A8
 ADD A8,A4,A0
 LDH *++B6(4),A7
|| ADD 2,A0,B4
|| SUB A3,4,A5
 MVK 0x20,B0
 ZERO A0
 LDH *++A5(4),A9
|| LDH *B4++(4),B5
 LDH *+A5(2),A3
|| SUB B0,1,B0
 LDH *++A5(4),A9
|| LDH *B4++(4),B5
|| MPY A7,A9,A7
 LDH *+A5(2),A3
|| LDH *+B4(2),A7
|| MPY B5,A3,B5
|| SUB B0,1,B0
 LDH *++A5(4),A9
|| LDH *B4++(4),B5
|| MPY A7,A9,A7
|| ADD A0,A7,A0
|| [B0] B loop
 LDH *+A5(2),A3
|| LDH *+B4(2),A7
|| MPY B5,A3,B5
|| ADD A0,B5,A0
|| SUB B0,1,B0
 MPY A7,A9,A7
|| ADD A0,A7,A0
 LDH *++B6(4),A7
|| MPY B5,A3,B5
|| ADD A0,B5,A0
|| MVK 0x20,B0
 LDH *++A5(4),A9
|| LDH *B4++(4),B5
|| ADD A0,A7,A0
 LDH *+A5(2),A3
|| ADD A0,B5,A0
|| SUB B0,1,B0
|| SUB B1,1,B1
 LDH *++A5(4),A9
|| LDH *B4++(4),B5
|| STH A0,*A6++(4)
|| ZERO A0
 LDH *+A5(2),A3
|| LDH *+B4(2),A7
|| ADD 4,A8,A8
|| ADD A8,A4,A0
|| [B1] B outloop
 ADD 2,A0,B4
|| SUB A3,A4,A5

SUB A4,4,B6 MV B4,A3
MVK 0x19,B1 ZERO A8

outloop ADD A8,A4,A0
LDH *++B6(4),A7 ADD 2,A0,B4 SUB A3,4,A5
MVK 0x20,B0
ZERO A0 Prolog
LDH *++A5(4),A9 LDH *B4++(4),B5

LDH *+A5(2),A3 SUB B0,1,B0
LDH *++A5(4),A9 LDH *B4++(4),B5 MPY A7,A9,A7
LDH *+A5(2),A3 LDH *+B4(2),A7 MPY B5,A3,B5 SUB B0,1,B0

loop LDH *++A5(4),A9 LDH *B4++(4),B5 MPY A7,A9,A7 ADD A0,A7,A0 [B0] B loop
LDH *+A5(2),A3 LDH *+B4(2),A7 MPY B5,A3,B5 ADD A0,B5,A0 SUB B0,1,B0

MPY A7,A9,A7 ADD A0,A7,A0
MPY B5,A3,B5 ADD A0,B5,A0 MVK 0x20,B0

ADD A0,A7,A0 Epilog
ADD A0,B5,A0 SUB B1,1,B1
STH A0,*A6++(4) [B1]B outloop
ADD 4,A8,A8

SUB A4,4,B6 MV B4,A3
MVK 0x19,B1 ZERO A8

outloop ADD A8,A4,A0
LDH *++B6(4),A7 ADD 2,A0,B4 SUB A3,4,A5
MVK 0x20,B0
ZERO A0

loop LDH *++A5(4),A9
LDH *+A5(2),A3
LDH *B4++(4),B5
MPY A7,A9,A7
MPY B5,A3,B5
SUB B0,1,B0
LDH *+B4(2),A7
ADD A0,A7,A0
[B0] B loop
ADD A0,B5,A0
STH A0,*A6++(4) MVK 0x20,B0 SUB B1,1,B1
[B1] B outloop
ADD 4,A8,A8

SUB A4,4,B6
MV B4,A3
MVK 0x19,B1
ZERO A8

outloop ADD A8,A4,A0
LDH *++B6(4),A7
ADD 2,A0,B4
SUB A3,4,A5
MVK 0x20,B0
ZERO A0

loop LDH *++A5(4),A9
LDH *+A5(2),A3
LDH *B4++(4),B5
MPY A7,A9,A7
MPY B5,A3,B5
SUB B0,1,B0
LDH *+B4(2),A7
ADD A0,A7,A0
[B0] B loop
ADD A0,B5,A0
STH A0,*A6++(4)
MVK 0x20,B0
SUB B1,1,B1
[B1]B outloop
ADD 4,A8,A8

LDH *++B6(4),A7

LDH *++B6(4),A7 LDH *B4++(4),B5

LDH *+A5(2),A3 SUB B0,1,B0

LDH *++A5(4),A9 LDH *B4++(4),B5 MPY A7,A9,A7

LDH *+A5(2),A3 LDH *+B4(2),A7 MPY B5,A3,B5 SUB B0,1,B0

LDH *++A5(4),A9 LDH*B4++(4),B5 MPY A7,A9,A7 ADD A0,A7,A0 [B0] B loop

LDH *+A5(2),A3 LDH *+B4(2),A7 MPY B5,A3,B5 ADD A0,B5,A0 SUB B0,1,B0

International Journal of Computer Science and Electronics Engineering (IJCSEE) Volume 1, Issue 1 (2013) ISSN 2320–4028 (Online)

42

VI. EXPERIMENT

Several nested loops have been software de-pipelined using
the algorithms described in this paper. The test programs are
hand-written typical DSP applications. Table 1 presents the
results of software de-pipelining the nested loops in these
programs.

The first column contains the name of the function. FIR4
implements an FIR filter, Vitgsm is a GSM decoder, and the
last two loops correspond to routines that perform VSELP
vocoder codebook search. The second column provides
information about the optimizations performed on the
different loops which, apart from software pipelining, consist
of loop unrolling the innermost loop several times.

The next column shows the loop counters for inner and
outer loops (represented by in and out, respectively) in the C
implementation of the different functions. The C code for the
Codebook search routine was not accessible to us. The next
two columns compare loop counter initial values and body
lengths of both inner and outer loops before and after de-

pipelining. The length is computed based on VLIW
instructions. Note that the VLIW instructions of the inner loop
are included in the outer loop.

Since the software de-pipelining is intended to reduce the
complexity of the code, total number of sequential instructions
and branches are also compared before and after the de-
pipelining. Here sequential instructions and not VLIW
instructions are counted. After software pipelining the loop
code is written in a sequential form. Therefore, the
comparison in terms of sequential instructions is more
representative than the comparison of number of VLIW
instructions.

The number of branches also provides information on how
much it is easier to understand the sequentialized code for the
loops and the corresponding control flow graph. After de-
pipelining all examples have only two branches, which
involve the jump to the inner loop entry and the jump to the
outer loop entry.

TABLE 1 EXPERIMENT RESULT

Function Name

Optimization approaches
C code Assembly code De-pipelining result

Loop count Loop count length Instr.
number

Branch
number

Loop count length Instr.
number

Branch
number inner outer in out in out in out in out in out

Fir4 1. unrolling 4 times
2. software pipelining

software pipelining
to save prolog N M N/4 M/2 4 16 99 3 N/4 M/2 34 40 54 2

Vitgsm GSM rate-1/2
convolutional decoder

1. innermost unrolled.
2.software pipelining

software pipelining
 8 M 8 M 3 11 79 4 8 M 22 24 65 2

Codebook search
(Loop 1)

1. software pipelining
2. unrolling

software pipelining - - 18 M 2 8 59 6 21 M 12 25 39 2

Codebook search
(Loop 2)

1. software pipelining
2. unrolling

software pipelining - - 8 M 2 8 98 6 11 M 12 25 59 2

VII. RELATED WORK

Since Cifuences and her colleagues presented their work,
many decompilation techniques have been published [4, 6, 8,
13, 26]. However, few papers tackle deoptimizaiton
techniques, in particular, fewer still are decompilation papers
that involve loops and instruction-level parallel architectures.

Snavely, Debray and Andrews [20] present instruction level
deoptimization approaches on Intel Ianium including
unpredication, unscheduoing and unspeculation. However
they did not tackle loop de-optimization and software de-
pipelining. Wang et al. [27] apply un-speculation technique on
modulo scheduled loops to make the code easier to
understand.

Stiff and Vahid [21] use loop rerolling technique for binary-
level coprocessor generation, which is the reverse of loop
unrolling - a popular loop optimization. However, they did not
deal with software pipelining.

Zhang et al. [28] propose to use a propositional calculus
technique to recover high level control constructs from binary
executable code.

Modern DSP such as Texas Instruments’ TMS320C6000
has rather long branch delay slots and allows branches to issue
in the delay slots of other branches resulting in high efficient
but cryptic code. Cooper et al. Reference [9] presents a
method to correctly build CFG for scheduled code in the
presence of branches within delay slots. Bermudo and Krall
[2]-[3] present an efficient algorithm to construct CFG having

no branch instructions with delay slots making the code be
easy understandable and processed by a reverse compiler.

Su et al. present software de-pipelined technique [22]-[23]
for single level loops. Their method based on building
LBDDG in software pipelined loop can convert the
complicated software pipelined loop code to a semantically
equivalent sequential loop.

VIII. CONCLUSION

In this article we presented a method for software de-
pipelining of nested loops. This method is an extension of an
algorithm for single loops, which has been integrated in a
reverse compiler for assembly language programs for digital
signal processors. Our extended method has been evaluated by
applying it to four software pipelined loops. We are able to
recover a sequential representation of the pipelined loop.

We are working with loop de-optimization techniques
focusing on those loops optimized by loop unrolling and
software pipelining, which are popular in modern DSP
compiler generated code.

ACKNOWLEDGMENT

This work was supported in part by the Christian
DopplerForschungsgesellschaft and Infineon. Bogong Su was
partly supported by the Center for Research, College of
Science and Health, William Paterson University.

International Journal of Computer Science and Electronics Engineering (IJCSEE) Volume 1, Issue 1 (2013) ISSN 2320–4028 (Online)

43

REFERENCES

[1] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools.2nd ed. Addison-Wesley, 2007.

[2] N. Bermudo. Low-level reverse compilation techniques. PhD Thesis.
Technische Universität Wien. October, 2005.

[3] N. Bermudo, Nigel Horspool and A. Krall, Control flow graph
reconstruction for reverse compilation of assembly language programs
with delayed instructions, Proc. of SCAM2005, 2005.

[4] G. Caprino, Decompiler Design, Backer Street Software,
http://www.backerstreet.com/decompiler/decompilers.htm, 2009.

[5] S. Carr, C. Ding, and P. Sweany, Improving Software Pipelining with
Unroll-and-Jam, Proc. of the Twenty-Ninth Annual Hawaii International
Conference on System Sciences, 1996.

[6] G. Chen, at el., A Refined Decompiler to Generate C Code with High
Readability, Proc. of the 17th Working Conference on Reverse
Engineering, 2010.

[7] C. Chung and X. Fu, Achieving better code optimization in DSP
designs, EETimes, June 27, 2005.

[8] C. Cifuentes, Reverse Compilation Techniques, Ph.D Dissertation,
Queensland University of Technology, Dept. of CS, 1994. of 8th
Working Conference on Reverse Engineering, 2001.

[9] K. D. Cooper, T. J. Harvey, and T. Waterman. Building a Control Flow
Graph from Scheduled Assembly Code. TR02-399. Rice University,
June 2002.

[10] M. Fellahi and A. Cohen, Software Pipelining in Nested Loops with
Prolog-Epilog Merging, Lecture Notes in CS, SpingerLink, 2009.

[11] J. Fisher, Trace Scheduling: A Technique for Global Microcode
Compaction, IEEE Tran. On Computers, Vol. c-30, NO. 7, July 1981.

[12] A. Ghuloum and A. Fisher, Flattening and parallelizing irregular,
recurrent loop nests, Proc. Of 5th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, 1995.

[13] A. Johnstone, et al., Reverse Compilation of Digital Signal Processor
Assembler Source to ANSI-C, Proc. of ICMS99, 1999.

[14] M. Lam, Software pipelining: An effective scheduling technique for
VLIW machines, Proc. Of SIGPLAN 88 Conference on Programming
Language Design and Implementation, 1988.

[15] K.Muthukumar and G. Doshi, Software pipelining of nested loops. In R.
Wilhelm, editor, CC2001, LNCS 2027, pages 165-181. Springer-Verlag,
Berlin Heidelberg, 2001.

[16] D. Petkov, Efficient pipelining of nested loops: Unroll-and-Squash,
Master Thesis, MIT, 2001.

[17] J. Ramanujam, Optimal software pipelining of nested loops, Proc. of the
8th International Symposium on Parallel Processing, 1994.

[18] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, G. Gao, Single-
dimension software pipelining for multi-dimensional loops, Proc. of the
international Symposium on Coded Generation and Optimization, 2004.

[19] R. Scales, Nested Loop Optimization on the TMS320C6x, Application
Report SPRA519, Digital Signal Processing Solutions February, Texas
Instrument, 1999.

[20] N. Snavely and S. Debray, Unpredication, unscheduling, unspeculation:
Reverse engineering Itanium executables, IEEE transactions on Software
Engineering, 31(2), Feb., 2005.

[21] G. Stiff and F. Vahid, New Decompliation Techniques for Binary-level
Co-processor Generation, Proc. of ICCAD-2005, pp. 547-554Nov. 2005.

[22] B. Su, J. Wang, E. Hu, and J. Manzano, De-pipeline a Software
Pipelined Loop, Proc. of ICASSP 03, June 2003.

[23] B. Su, J. Wang, E. Hu, and J. Manzano, Software de-pipelining
Technique, Proc. of SCAM2004, 2004.

[24] B. Su and J. Wang, Algorithms of Nested Loops De-pipelining, Tech.
Report, Dept. of CS, WPU, 2012.

[25] TMS320C6000 Programmer’s Guide, SPRU198G, August 2002.
[26] J. Wang and B. Su, Software pipelining of nested loops for real-time

DSP architectures, Proc. of ICASSP 98, May 1998.
[27] M. Wang, R. Zhao, J. Pang, and G. Cai, Un-speculation in Modulo

Scheduled Loops, Proc. of 2nd Int. Multisymposium on Computer and
Computational Sciences, pp. 486-489, 2008.

[28] J. Zhang, R. Zhao, J. Pang, and W. Fu, Decompiling High-level Control
Structures with Propositions, Proc. of 3rd International Symposium on
Intelligent Information Technology Application, 2009.

International Journal of Computer Science and Electronics Engineering (IJCSEE) Volume 1, Issue 1 (2013) ISSN 2320–4028 (Online)

44

