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Abstract— Large amount of software for embedded digital signal 

processing systems is written in assembly language. Software 
pipelining of loops is necessary to exploit the full potential of Very 
Long Instruction Word (VLIW) processors. For both understanding 
software pipelined loops and reverse compiling them to high level 
language code the software pipelined loops must be de-pipelined back 
to the original loops. In this paper we present technique for software 
de-pipelining of nested loops, demonstrate it with an example and 
evaluate the benefits of some software pipelined nested loops.  

 
Keywords—software pipelining; de-pipelining; nested loops; 

DSP.  
 

I. INTRODUCTION 
 

EVERSE compilation techniques [4, 6, 13] have been 
applied to many areas such as porting legacy software 

written in assembly language to new architectures, link-time 
optimizers, and high-level debuggers [8]. Some key problems 
such as unpredication and unspeculation [20], reconstructing 
control structures [21], resolution of branch delays [2]-[3] and 
software de-pipelining [22]-[24] have been tackled recently.  

Software pipelining [14] is a loop parallelization technique 
used to speed up loop execution. It is widely implemented in 
optimizing compilers for very long instruction word (VLIW) 
and superscalar processors such as IA-64, Texas Instruments' 
C6X and StarCore’s SC140 DSP that support instruction level 
parallelism. Because nested loops take a large portion of 
execution time in scientific programs and DSP applications, 
software pipelining of nested loops have been extensively 
investigated [10, 15, 16, 17, and 18].  

Software de-pipelining [22]-[23] is the reverse of software 
pipelining. This technique involving only single loops has been 
incorporated into a reverse compiler for the Texas Instruments 
C6X architecture [2]. We extend this technique to handle 
nested loops in digital signal processing (DSP) applications. 
This paper first presents a formal description of software 
pipelining and de-pipelining.  We then analyze the existing 
software pipelining techniques and present our software de-
pipelining technique for two-level nested loops. To illustrate 
the process, we present a working example. Finally, we 
provide our experimental results. 
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II. FORMAL DESCRIPTION OF PIPELINING AND  
DE-PIPELINING OF TWO-LEVEL NESTED LOOPS 

Data dependence is one of the major constraints for loop 
transformation such as software pipelining and de-pipelining. It 
is essential to understand how we represent data dependence of 
two-level nested loops. 

Each iteration of a two-level nested loop is identified by its 
index vector ),( 21 ii , where  1i  and  2i  are the values of the 
outer and inner loop index, respectively. Thus, an instance of 
an operation op in a two-level nested loop is represented 
as )),(,( 21 iiop . For any two instances, )),(,( 211 iiop  
and )),(,( 212 jjop , if there is a data dependence between them, 
then we say that there is a data dependence between 1op  and 

2op  with a distance vector of (d1, d2), where dk = ik – jk for k 
= 1 or 2. Like a data dependence in a single-level loop, a delay 
δ is associated with each data dependence in a nested loop. 

The data dependence graph (DDG) of a two-level nested 
loop, therefore, is represented as (O, E, (d1, d2), δ),  where O is 
the node (operation) set, E is the (data dependence) edge set, 
(d1, d2) and δ are the distance vector and the delay, 
respectively,  on each data dependence edge. Although delay δ 
is associated with an edge in the DDG, it is actually the 
execution time of the source operation op, we sometimes also 
use δ(op); δ(op) and δ(e) can be exchangeable used when op is 
the source operation of dependence edge e. However, DDGs 
with distance vectors are inconvenient in use during software 
pipelining or loop de-pipelining. We proposed linearized 
DDGs to represent data dependences of the two-level nested 
loops.  

Definition 1 Given a two-level nested loop and its DDG, G 
= (O, E, (d1, d2), δ),   the linearized DDG of G is defined as 
LG = (O, E, ld, δ), where, for each edge e, ld(e) = n2*d1(e)+ 
d2(e), and where n2 is the trip count of the inner loop; 

Using the concept of linearized DDG, an instance of an 
operation op in a nested loop, )),(,( 21 iiop , can be also 
represented as (op, li), where li = n2*i1 + i2. li is called the 
linearized index of the index vector (i1, i2). It is a one to one 
mapping between an index vector and its corresponding 
linearized index. 

Now we are ready to present the formal description of loop 
schedule, software pipelining and de-pipelining for two-level 
nested loops. 

Definition 2 Given a two-level nested loop and its DDG, G 
= (O, E, (d1, d2), δ), generate G's linearized DDG, LG = (O, E, 
ld, δ). We define loop schedule σ as a mapping function from 
O x N to N where N is a nonnegative integer set. σ(op,li) 
denotes the cycle number in which the instance of operation op 
with the linearized index li is issued for execution. Note that σ 
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is a valid loop schedule if and only if the following three 
conditions are satisfied: 

(1) resource constraint: in any cycle, there must be no 
hardware resource conflict; 
(2) data dependence constraint: for any data dependence 
edge e = (op1,op2) and for any linearized index j,  
      σ(op1, j) + δ(e)  ≤  σ(op2 , j + ld(e)); 
(3) cyclicity constraint: σ must be expressible in the form of 
a loop, that is, there must be an integer II, for any operation 
op in the nested loop and for any linearized index  j>1,  
      σ(op, j) =  σ(op, j-1) + II*(j-1), II is called the 
linearized initiation interval. 

Definition 3 Software pipelining of a nested loop is to find a 
valid loop schedule with minimum linearized initiation 
interval. 

Definition 4 Given a nested loop and its DDG,      
G = (O, E, (d1, d2), δ),  generate G's linearized  DDG, LG = 

(O, E, ld, δ). De-pipelining is to find a valid loop schedule σ 
which satisfies the following two conditions:  

(1) for any operation op and for any linearized index j, 
σ(op, j) + δ(op)  ≤  σ(op , j +1); 
(2) for any two operations 1op  and op2, and for any 
linearized index j,   σ(op1, j) + δ(op1)  ≤  σ(op2 , j +1); 

Definition 5 VLIW Instruction VIi  = {opi1, opi2, …, opin | 
all n instructions can be executed at the same CPU clocki 
without any resource conflict } 

The goal of software pipelining is to speed up the execution 
time of a nested loop. To do so, software pipelining overlaps 
operations from different iterations to exploit instruction level 
parallelism. De-pipelining, however, is to execute the loop 
sequentially, i.e., one iteration after another. Thus, in a de-
pipelined loop, operations from different iterations will not be 
overlapped and the loop-carried dependence is automatically 
satisfied. 

Different approaches have been proposed to software 
pipeline a two-level nested loop.  It is important that we should 
first check if a two-level nested loop is software pipelined. The 
idea behind our method is to verify the loop-carried data 
dependences in the linearized DDG. If the dependences are 
broken, the nested loop is likely to be software pipelined. 

 
III. EXISTING NESTED LOOP  

SOFTWARE PIPELINING APPROACHES 
 

So far all software pipelining techniques of nested loops are 
for two level nested loops only. Most are applied to VLIW 
architectures such as the Itanium and TIC6x DSP. They have 
some common characteristics shown below. 

The inner loop is software pipelined first for a better chance 
of overlapping with instructions of the outer loop. Unrolling or 
Unroll-and-Jam [5] of the inner loop is necessary before 
software pipelining the outer loop [7, 19].  

Outer loop software pipelining overlaps outer loop iterations 
including the epilog and prolog of the inner loop with each 
successive iterations of the outer loop [10, 15]. Performing 
outer loop software pipelining often requires the use of large 

number of registers. Because the number of available registers 
is limited for most DSP processors, it is nearly impossible to 
overlap the pipelined inner loop body with either the pipelined 
inner loop body or prolog or epilog of preceding and 
succeeding iterations. Fig.1 shows the concept of software 
pipelining the outer loop. Fig. 1(a) is a software pipelined inner 
loop. Fig. 1(b) presents an example from a real TI assembly 
code; the prolog of a pipelined inner loop of the first iteration 
of outer loop can be overlapped with the epilog of pipelined 
inner loop of the second iteration of outer loop. Fig. 1(c) shows 
the normal style of outer software pipelining in which some 
parts of the second iteration are collapsed. By changing the 
entry for the first loop iteration the space for the prolog can be 
saved (see Fig. 1(d)).  
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    (c) outer loop software pipelining               (d) a variation of outer 
                                                                             software pipelining 

Fig. 1  Software pipelining outer loop  
 

Sometimes outer and inner loop levels are merged by 
applying loop transformation techniques such as dovetailing 
[25], and loop flattening [12]. In particular, TI’s conditionally 
execute outer loop technique [19, 25] supported by predicate 
registers makes the implementation of loop flattening easier 
and more efficient. However de-optimizing loops optimized by 
dovetailing or loop flattening is more complicated, our research 
work focuses on software de-pipelining problems of DSP 
processors.  

 
IV. NEW NESTED LOOP DE-PIPELINING ALGORITHMS 

 

Based on the above analysis of software pipelining of 
nested loops we have extended our software de-pipelining 
approach [22]-[23] to deal with nested loops, which have been 
software pipelined as shown in Fig. 1 (c) and (d).  

The nested loop de-pipelining algorithm has 12 phases: 

(a) software pipelined  
        inner loop 
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1. Control flow graph CFG reconstruction and natural loop 
analysis: Use natural loop analysis [1] from the given 
segment of assembly code to find CFG, the entries of outer 
loop and inner loop, the inner loop body and the end of 
outer loop.  

2. Software-pipelined loop checking: For each instruction 
pair (opi, opj) in inner loop body, if opi data precedes opj 
and the latency of opi ≥ the distance between opi and opj, 
then the inner loop is software pipelined. Similarly, we can 
check whether the outer loop is software pipelined. 

3. Identification of the pre-area and post-area of the outer 
loop: Pre-area contains the instructions before the inner 
loop body, which includes the prolog of the software-
pipelined inner loop and the initialization parts of inner 
loop and outer loop. 
 Post-area contains the instructions following the inner 

loop body which includes the epilog of the software-
pipelined inner loop; it may also include the duplicated 
instructions of prolog of the software-pipelined inner loop. 

4. Transformation of the space saving variation of outer 
software pipelining: If the given software pipelined code is 
a space saving variation as shown in Fig. 1(d), it must be 
transformed to the normal style as shown in Fig. 1(c) first. 

5. De-pipelining  the outer loop: If the outer loop is software-
pipelined normally, remove those instructions in post-area 
which are the copies of instructions in pre-area and adjust 
the entry of outer loop to form the prolog of inner loop. 

6. Live variable analysis: Search all last_instructions in the 
inner loop, which contains all memory store instructions 
and register-written instructions if those written registers 
are live variables after inner loop exit 

7. Identification of the prolog and epilog: Starting from the 
inner loop entry search upward to all VLIW instructions 
containing instructions that exist in inner loop body, the 
highest VLIW instruction is the upper boundary of the 
prolog. The lower boundary of the epilog is obtained in a 
similar manner.  

8. Prolog and Epilog recovery: If the prolog is collapsed, 
unroll the inner loop body and check every instruction in 
the unrolled copy; if it does not modify any part of the 
machine state, then it is the collapsed instruction. Epilog 
can be recovered in a similar manner.  

9. Build LBDDG: In prolog and inner loop body, build a data 
dependency graph called LBDDG. 

10. Scheduling: From last_instructions using list scheduling, 
arrange the partial order list of the critical path of LBDDG 
in a bottom-up manner to get a sequential code, and then 
insert the rest instructions in the non-critical path; finally 
obtain a sequentialized code which is semantically 
equivalent to the original software pipelined inner loop. 

11. Inner loop replacement: Replace the software-pipelined 
inner loop by its sequentialized code.  

12. Outer loop scheduling: Build the data dependency graph 
for all VLIW instructions beyond and after the 
sequentialized inner loop respectively; then use list 

scheduling to form the sequential code beyond and after 
the sequentialized inner loop to form the final sequential 
code. 

Reference [24] presents the detail algorithms of each phase. 
 

V. WORKING EXAMPLE 
 

We have taken an assembly language version of a FIR 
function as a working example to demonstrate our de-
pipelining technique on two-level nested loops. The unrolled 
inner loop is shown in Fig. 2(a). The machine architecture is 
similar to TIC62. However, for simplicity, we assume that all 
branch, load, and multiplication instruction have only one 
delay slot (latency is two clock cycles) and other instructions 
have no delay slots.  Fig. 2(b) shows its optimized assembly 
code, the symbol “||” in front of an instruction indicates that the 
instruction is executed in parallel with the one immediately 
above it. All instructions executed in parallel belong to a single 
VLIW instruction. 

Fig. 2(c) is a new form for assembly code to explicitly 
express the instructions that are executed in parallel, where 
each row is a VLIW instruction. By using natural loop analysis 
[1] we can find that this is a two level nested loop; where 
outloop and loop are the entries of the outer loop and inner 
loop respectively. 

The length of the inner body is two because the latency of 
branch instruction is two. By using the software-pipelined loop 
checking, we find out that the inner loop has been software-
pipelined, because the LDH *++A5(4),A9 and MPY A7,A9,A7 
are located in the first VLIW instruction of inner loop but the 
LDH instruction writes register A9 which is read by MPY 
instruction and LDH’s latency is two cycles. Fig. 2(c) also 
shows the pre-area and post-area. Some instructions in pre-area 
have copies (as shown with shadow) in post-area; this working 
example is the type as Fig.1(c) shown. Similarly, by using the 
Software-pipelined loop checking, we find out that the outer 
loop has also been software-pipelined. Because in the 
post_area, the LDH *++B6(4),A7 instruction writes register 
A7 which is read by MPY A7,A9,A7, but the MPY instruction 
is located earlier than the LDH instruction even LDH’s latency 
is two cycles. 

Fig. 2(d) is the result of De-pipelined outer loop. The 
duplicated instructions in post-area have been removed. Fig. 
2(d) also shows the prolog and epilog parts of software-
pipelined inner loop found in the Identification of the prolog 
and epilog phase. In this simple example both prolog and 
epilog are not collapsed. By using live variable analysis we 
find that ADD A0, B5, A0 is the last_instruction. Fig. 2(e) 
shows the LBDDG of the inner loop which is the result of the 
Build_LBDDG phase. In Fig. 2(f) the inner loop is replaced by 
a sequential loop which is semantically equivalent to the 
software-pipelined loop from the Inner loop replacement 
phase. Fig. 2(g) presents the final sequential code produced 
from the Outer loop scheduling phase. 
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void fir (short x[], short h[], short y[])
{

for (j=0; j<50; j=j+2)
{ sum=0;
  x0=s[j];
  for (i=0; i<64; i+=2)

          { x1=x[j+i+1];
h0=h[i];
sum+=x0*h0;
x0=x[j+i+2];
h1=h[i+1];
sum+=x1*h1; }

    y[j]=sum; }
}

short i, j; int sum; short x0, x1, h0, h1;

       
         (a) FIR C source code 

 
                                                                         (c) Pre-area and Post-area 
 

 
 
 
 
 
 
 
 
 
 
                                            
 
 
                                                                     (d) After de-pipelining outer loop 
 

 
 
 
 
 
 
 

 
  

 
                                 (e) Building LBDDG of innerloop 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       (b) FIR assembly code                                          (f) After replacing inner loop                                              (g) Final sequential  
                                                                                                                                                                                       assembly code 

Fig. 2    Working example 
 

SUB  A4,4,B6 MV  B4,A3 
MVK  0x19,B1 ZERO A8
ADD A8,A4,A0
LDH *++B6(4),A7 ADD  2,A0,B4 SUB  A3,4,A5 Pre-area
MVK 0x20,B0  
ZERO A0  
LDH *++A5(4),A9 LDH  *B4++(4),B5  

LDH  *+A5(2),A3 SUB  B0,1,B0 
outloop LDH *++A5(4),A9 LDH *B4++(4),B5  MPY  A7,A9,A7 

LDH  *+A5(2),A3 LDH *+B4(2),A7 MPY  B5,A3,B5 SUB  B0,1,B0 
loop LDH *++A5(4),A9 LDH *B4++(4),B5  MPY A7,A9,A7 ADD A0,A7,A0 [ B0] B  loop 

LDH *+A5(2),A3 LDH *+B4(2),A7 MPY  B5,A3,B5 ADD A0,B5,A0 SUB  B0,1,B0 
MPY  A7,A9,A7 ADD A0,A7,A0 

LDH *++B6(4),A7 MPY  B5,A3,B5 ADD A0,B5,A0 MVK 0x20,B0  
LDH *++A5(4),A9 LDH  *B4++(4),B5  ADD A0,A7,A0 Post-area

LDH  *+A5(2),A3 ADD  A0,B5,A0 SUB   B1,1,B1
LDH *++A5(4),A9 LDH  *B4++(4),B5  STH A0,*A6++(4) [ B1] B outloop 
LDH *+A5(2),A3 LDH *+B4(2),A7 ADD 4,A8,A8 ADD A8,A4,A0

   SUB     A4,4,B6
||  MV       B4,A3
   MVK   0x19,B1
||  ZERO   A8
    ADD A8,A4,A0
    LDH  *++B6(4),A7
||  ADD  2,A0,B4
||  SUB   A3,4,A5
   MVK  0x20,B0
   ZERO  A0
   LDH *++A5(4),A9
||  LDH *B4++(4),B5
   LDH *+A5(2),A3
||  SUB    B0,1,B0
   LDH *++A5(4),A9
||  LDH *B4++(4),B5
||  MPY  A7,A9,A7
   LDH *+A5(2),A3
||  LDH *+B4(2),A7
||  MPY  B5,A3,B5
||  SUB   B0,1,B0
   LDH *++A5(4),A9
||  LDH *B4++(4),B5
||  MPY  A7,A9,A7
||  ADD  A0,A7,A0
|| [ B0]   B   loop
   LDH *+A5(2),A3
||  LDH *+B4(2),A7
||  MPY  B5,A3,B5
||  ADD  A0,B5,A0
||  SUB    B0,1,B0
   MPY   A7,A9,A7
||  ADD  A0,A7,A0
   LDH   *++B6(4),A7
||  MPY  B5,A3,B5
||  ADD  A0,B5,A0
||  MVK   0x20,B0
   LDH *++A5(4),A9
||  LDH *B4++(4),B5
||  ADD  A0,A7,A0
   LDH *+A5(2),A3
||  ADD  A0,B5,A0
||  SUB  B0,1,B0
||  SUB   B1,1,B1
   LDH *++A5(4),A9
||  LDH *B4++(4),B5
||  STH  A0,*A6++(4)
|| ZERO  A0
   LDH *+A5(2),A3
||  LDH *+B4(2),A7
||  ADD  4,A8,A8
||  ADD A8,A4,A0
||  [ B1] B  outloop
 ADD 2,A0,B4
||  SUB A3,A4,A5

SUB  A4,4,B6 MV  B4,A3 
MVK  0x19,B1 ZERO A8

outloop ADD A8,A4,A0
LDH *++B6(4),A7 ADD  2,A0,B4 SUB   A3,4,A5
MVK 0x20,B0  
ZERO  A0  Prolog
LDH *++A5(4),A9 LDH  *B4++(4),B5  

LDH  *+A5(2),A3 SUB  B0,1,B0 
LDH *++A5(4),A9 LDH  *B4++(4),B5  MPY  A7,A9,A7 
LDH *+A5(2),A3 LDH *+B4(2),A7 MPY  B5,A3,B5 SUB  B0,1,B0 

loop LDH *++A5(4),A9 LDH *B4++(4),B5  MPY  A7,A9,A7 ADD A0,A7,A0 [ B0] B  loop 
LDH *+A5(2),A3 LDH *+B4(2),A7 MPY  B5,A3,B5 ADD A0,B5,A0 SUB  B0,1,B0 

MPY A7,A9,A7 ADD A0,A7,A0 
MPY B5,A3,B5 ADD A0,B5,A0 MVK 0x20,B0  

ADD A0,A7,A0 Epilog
ADD A0,B5,A0 SUB   B1,1,B1
STH A0,*A6++(4) [ B1]B outloop 
ADD 4,A8,A8 

SUB A4,4,B6 MV B4,A3 
MVK  0x19,B1 ZERO    A8

outloop ADD A8,A4,A0
LDH *++B6(4),A7 ADD 2,A0,B4 SUB A3,4,A5
MVK   0x20,B0  
ZERO    A0  

loop LDH *++A5(4),A9 
LDH *+A5(2),A3 
LDH *B4++(4),B5  
MPY  A7,A9,A7 
MPY  B5,A3,B5 
SUB  B0,1,B0 
LDH *+B4(2),A7 
ADD A0,A7,A0 
[ B0] B  loop 
ADD  A0,B5,A0 
STH  A0,*A6++(4) MVK   0x20,B0  SUB B1,1,B1
[ B1]  B outloop 
ADD  4,A8,A8 

SUB  A4,4,B6
MV  B4,A3 
MVK  0x19,B1 
ZERO    A8

outloop ADD   A8,A4,A0
LDH *++B6(4),A7 
ADD     2,A0,B4
SUB     A3,4,A5
MVK   0x20,B0  
ZERO    A0  

loop LDH *++A5(4),A9 
LDH  *+A5(2),A3 
LDH *B4++(4),B5  
MPY A7,A9,A7 
MPY B5,A3,B5 
SUB  B0,1,B0 
LDH *+B4(2),A7 
ADD A0,A7,A0 
[ B0] B loop 
ADD A0,B5,A0 
STH A0,*A6++(4)
MVK 0x20,B0  
SUB  B1,1,B1
[ B1]B outloop 
ADD 4,A8,A8 

LDH *++B6(4),A7 

LDH *++B6(4),A7 LDH *B4++(4),B5  

LDH *+A5(2),A3 SUB    B0,1,B0 

LDH *++A5(4),A9 LDH *B4++(4),B5  MPY A7,A9,A7 

LDH *+A5(2),A3 LDH *+B4(2),A7 MPY B5,A3,B5 SUB    B0,1,B0 

LDH *++A5(4),A9 LDH*B4++(4),B5  MPY A7,A9,A7 ADD A0,A7,A0 [ B0] B  loop 

LDH *+A5(2),A3 LDH *+B4(2),A7 MPY B5,A3,B5 ADD A0,B5,A0 SUB  B0,1,B0 
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VI. EXPERIMENT 
 

Several nested loops have been software de-pipelined using 
the algorithms described in this paper. The test programs are 
hand-written typical DSP applications. Table 1 presents the 
results of software de-pipelining the nested loops in these 
programs. 

The first column contains the name of the function. FIR4 
implements an FIR filter, Vitgsm is a GSM decoder, and the 
last two loops correspond to routines that perform VSELP 
vocoder codebook search. The second column provides 
information about the optimizations performed on the 
different loops which, apart from software pipelining, consist 
of loop unrolling the innermost loop several times.  

The next column shows the loop counters for inner and 
outer loops (represented by in and out, respectively) in the C 
implementation of the different functions. The C code for the 
Codebook search routine was not accessible to us. The next 
two columns compare loop counter initial values and body 
lengths of both inner and outer loops before and after de-

pipelining. The length is computed based on VLIW 
instructions. Note that the VLIW instructions of the inner loop 
are included in the outer loop.  

Since the software de-pipelining is intended to reduce the 
complexity of the code, total number of sequential instructions 
and branches are also compared before and after the de-
pipelining. Here sequential instructions and not VLIW 
instructions are counted. After software pipelining the loop 
code is written in a sequential form. Therefore, the 
comparison in terms of sequential instructions is more 
representative than the comparison of number of VLIW 
instructions.  

The number of branches also provides information on how 
much it is easier to understand the sequentialized code for the 
loops and the corresponding control flow graph. After de-
pipelining all examples have only two branches, which 
involve the jump to the inner loop entry and the jump to the 
outer loop entry.  

 
TABLE 1    EXPERIMENT RESULT 

Function Name 
 

Optimization approaches 
C code Assembly code De-pipelining result 

Loop count Loop count length Instr. 
number 

Branch 
number 

Loop count length Instr. 
number 

Branch 
number inner outer in out in out in out in out in out 

Fir4 1. unrolling 4 times  
2. software pipelining 

software pipelining 
to save prolog N M N/4 M/2 4 16 99 3 N/4 M/2 34 40 54 2 

Vitgsm GSM rate-1/2 
convolutional decoder  

1. innermost unrolled. 
2.software pipelining 

software pipelining 
 8 M 8 M 3 11 79 4 8 M 22 24 65 2 

Codebook search 
(Loop 1) 

1. software pipelining 
2. unrolling 

software pipelining  - - 18 M 2 8 59 6 21 M 12 25 39 2 

Codebook search 
(Loop 2) 

1. software pipelining 
2. unrolling 

software pipelining  - - 8 M 2 8 98 6 11 M 12 25 59 2 

 
VII. RELATED WORK 

 

Since Cifuences and her colleagues presented their work, 
many decompilation techniques have been published [4, 6, 8, 
13, 26]. However, few papers tackle deoptimizaiton 
techniques, in particular, fewer still are decompilation papers 
that involve loops and instruction-level parallel architectures.  

Snavely, Debray and Andrews [20] present instruction level 
deoptimization approaches on Intel Ianium including 
unpredication, unscheduoing and unspeculation. However 
they did not tackle loop de-optimization and software de-
pipelining. Wang et al. [27] apply un-speculation technique on 
modulo scheduled loops to make the code easier to 
understand.  

Stiff and Vahid [21] use loop rerolling technique for binary-
level coprocessor generation, which is the reverse of loop 
unrolling - a popular loop optimization. However, they did not 
deal with software pipelining. 

Zhang et al. [28] propose to use a propositional calculus 
technique to recover high level control constructs from binary 
executable code. 

Modern DSP such as Texas Instruments’ TMS320C6000 
has rather long branch delay slots and allows branches to issue 
in the delay slots of other branches resulting in high efficient 
but cryptic code. Cooper et al. Reference [9] presents a 
method to correctly build CFG for scheduled code in the 
presence of branches within delay slots. Bermudo and Krall 
[2]-[3] present an efficient algorithm to construct CFG having 

no branch instructions with delay slots making the code be 
easy understandable and processed by a reverse compiler. 

Su et al. present software de-pipelined technique [22]-[23] 
for single level loops. Their method based on building 
LBDDG in software pipelined loop can convert the 
complicated software pipelined loop code to a semantically 
equivalent sequential loop. 

 
VIII. CONCLUSION 

 

In this article we presented a method for software de-
pipelining of nested loops. This method is an extension of an 
algorithm for single loops, which has been integrated in a 
reverse compiler for assembly language programs for digital 
signal processors. Our extended method has been evaluated by 
applying it to four software pipelined loops. We are able to 
recover a sequential representation of the pipelined loop. 

We are working with loop de-optimization techniques 
focusing on those loops optimized by loop unrolling and 
software pipelining, which are popular in modern DSP 
compiler generated code. 
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