
The VAMAI { an Abstract Machine for IncrementalGlobal Dataow Analysis of PrologAndreas Krall and Thomas BergerInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8A-1040 Wienandi@mips.complang.tuwien.ac.atAbstractA commonly used technique for global ow analysis of Prolog programs is abstract interpretation.Until now nearly all abstract interpretation systems for Prolog are research prototypes and very slow.These systems are not suitable for the integration in Prolog compilers. So we developed the VAMAI,an abstract machine for the abstract interpretation of Prolog. The Vienna Abstract Machine (VAM)is an abstract machine which has been designed to eliminate some weaknesses of the Warren AbstractMachine (WAM). Di�erent versions of the VAM are used for di�erent purposes. The VAM2P is wellsuited for interpretation, the VAM1P is aimed for native code generation. The VAM2P has beenmodi�ed to the VAMAI, an abstract machine suited for abstract interpretation. The VAMAI does thedata ow analysis by a factor of two hundred faster than the previous used meta interpreters writtenin Prolog. Preliminary results of intermediate code size and analysis time are presented.1 IntroductionInformation about types, modes, trailing, reference chain length and aliasing of variables of a programcan be inferred using abstract interpretation. Abstract interpretation was introduced by [6] for dataow analysis of imperative languages. This work was the basis of much of the recent work in the �eldof declarative and logic programming [1] [3] [5] [8] [7] [11] [12] [14]. Abstract interpretation executesprograms over an abstract domain. Recursion is handled by computing �xpoints. To guarantee thetermination and completeness of the execution a suitable choice of the abstract domain is necessary.Correctness is achieved by iterating the interpretation until the computed information reaches a �xpoint.Termination can be assured by limiting the size of the domain. Most of the previously cited systems areeither meta-interpreters written in Prolog or general abstract interpretation systems and are very slow.A practical implementation of data ow analysis has been done by Tan and Lin [13]. They modi�ed aWAM emulator implemented in C to execute the abstract operations on the abstract domain. They usedthis abstract emulator to infer mode, type and alias information. They analysed a set of small benchmarkprograms in a few milliseconds which is about 150 times faster than the previous systems.Section 2 presents the VAMAI in detail with the complete instructions set, the memory model andthe execution principles. Section 3 has results which show the e�ciency of the VAMAI.2 The VAMAIWe followed the way of Tan and Lin and designed an abstract machine for abstract interpretation, theVAMAI. The design goal of this abstract machine was to develop a very fast global analysis system whichcollects the information necessary for optimizing the machine code generated by the VAM1P [9] Prologcompiler. The current implementation of the abstract machine computes information about mode, type,1

reference chain length and aliasing of variables, but it can be changed for other domains. The VAMAI isoptimized for this particular domain. It is based on top down abstract interpretation with tabulation. Anabstract machine breaks up the complex operation like abstract uni�cation or updating the extension tableinto more atomic instructions. The VAMAI has an instruction for each argument of a goal. The instructionset is based on the VAM2P [10] and bene�ts from the fast decoding mechanism of this machine. But therun time data structures and the operation of the instructions are completely di�erent. For support ofincremental analysis the inferred data ow information is stored directly in the intermediate code of theVAMAI. So the intermediate code is used like the extension table of the abstract interpretation algorithm.We choose the VAM as the basis for an abstract machine for abstract interpretation because it is muchbetter suited for our purpose than the WAM [15]: The parameter passing of the WAM via registersand storing registers in a choice point slows down the interpretation. Furthermore, in the WAM someinstructions are eliminated so that the relation between argument registers and variables is sometimesdi�cult to determine. The translation to a VAM2P-like intermediate code is much simpler and faster thanWAM code generation. A VAM2P-like interpreter enabled us to model low level features of the VAM.Furthermore, the VAM2P intermediate code is needed for the generation and optimization of machinecode.2.1 An informal interpretation modelWe use a top-down approach for the analysis of the desired information. Di�erent (static) calls to thesame clause are handled separately to get more exact types. This is achieved by duplicating the clausesfor each call of a procedure. So for each call of a goal there exists an own copy of the intermediate code ofthe called procedure. To save code size, only the head of the clauses are copied. The body of the clausesare shared. This duplication of the code gives a more precise analysis for the use in the VAM1P whichgenerates specialized code for each call, and simpli�es many parts of the VAMAI.Abstract interpretation with the VAMAI is demonstrated with the following short example. Fig. 1shows a simple Prolog program part, and a simpli�ed view of its code duplication for the representationin the VAMAI intermediate code.Prolog program:A1 :� B1B1 :� C1B2 :� B2; C2C1 :� trueCode representation:A11 :� B1B11 :� C1B12 :� B2; C2B21 :� C1B22 :� B2; C2C11 :� trueC21 :� true Figure 1: Prolog program part and its representation in VAMAIThe procedure B has two clauses, the alternatives B1 and B2. The code for the procedures B and C isduplicated because both procedures are called twice in this program. This code duplication leads to moreexact types for the variables, because the data ow information input might be di�erent (more or lessexact) for di�erent calls of the same procedure in a program (in the implementation the code duplicationis done only for the heads, the bodys of the clauses are shared). Abstract interpretation starts at thebeginning of the program with the clause A11. The information of the variables in the subgoal B1 aredetermined by the inferable data ow information from the two clauses B11 and B12 . After the information2

for both clauses has been computed, abstract interpretation is �nished because there is no further subgoalfor the �rst clause A1.In the conservative scheme it has to be supposed that both B11 and B12 could be reached duringprogram execution, therefore the union of the derived data ow information sets for the alternativeclauses of procedure B has to be formed. For B11 only information from C11 has to be derived because it isthe only subgoal for B11 . For B12 there exists a recursive call for B, named B2 in the example. Recursionin abstract interpretation is handled by computing a �xpoint, i.e. the recursive call is interpreted aslong as the derived data information changes. After the �xpoint is reached, computation stops for therecursive call. The data ow information for the recursion is assigned to the clauses B21 and B22 . Afterall inferable information is computed for a clause, it is stored directly into the intermediate code. Theentry pattern and success patterns are stored in the head variables information �elds, the variables of asubgoal contain the the success patterns of the calls of subgoals left to the current subgoal.2.2 The abstract domainThe goal of the VAMAI is to gather information about mode, type, reference chain length and aliasingof variables. Reference chain lengths of 0, 1 and greater 1 are distinguished. The type of a variable isrepresented by a set comprised of following simple types:free describes an unbound variable and contains a reference to all aliased variableslist is a non empty list (it contains the types of its arguments)struct is a termnil represents the empty listatom is the set of all atomsinteger is the set of all integer numbersPossible in�nite nesting of compound terms makes the handling of the types list and struct di�cult.To gather useful information about recursive data structures a recursive list type is introduced whichcontains also the information about the termination type.To represent the alias information variables are collected in alias sets. Variables which could possiblybe aliased, are in the same set. The alias sets are represented as double linked sorted lists. In theintermediate code each set is identi�ed by an unique number. Variables which are always aliased, canbe represented by references like in ordinary Prolog interpreters. The intersection of this sets has to bestored in the intermediate code.E�cient interpretation is achieved by using �xed-sized variable cells, which enables static stack framesize determination and the saving of the domains in intermediate code �elds. The set of the domainvalues is represented as a bit �eld. Set operations like union or di�erence can be implemented usinglogical operations. The computation of the least upper bound of two domains is implemented by abitwise or operation, the abstract uni�cation by a bitwise and.2.3 The VAMAI instruction setVariables are classi�ed into void, temporary and local variables. Void variables occur only once in aclause and no information has to be collected for them. Di�erent to the WAM, temporary variables occuronly in the head or in one subgoal, counting a group of built-in predicates as one goal. The built-inpredicates following the head are treated as if they belong to the head. Temporary variables need storageonly during one inference and can be stored in a �xed sized data structure. All other variables are localand are allocated on the stack.The representation for the arguments of a Prolog term is the same for VAMAI (see �g. 2) and VAM2Pwith the following exceptions:� Local variables have four additional information �elds in their intermediate code, the actual domainof the variable, the reference chain length and two �elds for alias information. This information3

uni�cation instructionsint I integeratom A atomnil empty listlist list (followed by its two arguments)struct F structure (functor)(followed by its arguments)void void variablefsttmp Xn �rst occurrence of temporary variable (o�set)nxttmp Xn further occurrence of temporary variable (o�set)fstvar Vn,D,R,Ai,Ac �rst occurrence of local variable (o�set, domain,reference chain length, is aliased, can be aliased)nxtvar Vn,D,R,Ai,Ac further occurrence of local variable (o�set, domain,reference chain length, is aliased, can be aliased)resolution instructionsgoal P,O subgoal (procedure pointer, end of goal)nogoal termination of a clausecut cutbuiltin I built-in predicate (built-in number)termination instructionscall termination of a goalFigure 2: VAMAI instruction set�elds replaces the extension table of conventional abstract interpretation algorithms. Local variablesof the head have splitted information �elds, because they store both the information at the entryof the clause and the information after a successful computation of this clause. Both informationis used for the handling of recursive calls.� The argument of a temporary variable contains an o�set which references this variable in a globaltable. The global table contains entries for the domain and reference length information or a pointerto a variable.� The intermediate code lastcall has been removed because last-call optimizationmakes no sense inabstract interpretation. Instead the intermediate code nogoal indicates the end of a clause. Whenthis instruction is executed the computation continues with the next alternative clause (arti�cialfail).� The intermediate code goal got an additional argument, a pointer to the end of this goal, that isthe instruction following the call.� The instruction const has been split into integer and atom.The translation of Prolog source code to VAMAI instructions is simple due to the direct mappingbetween source code and VAMAI code. The head arguments of a clause are translated to uni�cationinstructions. Each clause is terminated by the instruction nogoal. Each subgoal is translated to thegoal instruction, uni�cation instructions for each argument and is terminated by the call instruction.The following example shows the VAMAI code for the append procedure.append([], nilL, fsttmp LL nxttmp L). nogoal 4

append([listH| fsttmp HL1], fstvar L1,{},{},0,0L2, fstvar L2,{},{},0,0[listH| nxttmp HL3]) :- fstvar L3,{},{},0,0append(goal append,20L1, nxtvar L1,{},{},0,0L2, nxtvar L2,{},{},0,0L3 nxtvar L3,{},{},0,0) call. nogoalThe translation of terms to the intermediate code is done in two passes (see �g. 3). The �rst passscans the terms for variables and collects information about the variables in the var table. The secondpass again scans the terms and generates the VAMAI instructions. Between this two passes the variableclasses and o�sets are determined.HHHHHHjvar table�� ��6?������*������� terms�� ��HHHHHHj - VAMAI�� ��collectvariables - classifyvariables - generatecodeFigure 3: translator structure2.4 The VAMAI memory modelAnother signi�cant di�erence between the VAM2P and the VAMAI concerns the data areas, i.e. the stacks(see �g. 4). While the VAM2P needs three stacks, in VAMAI a modi�ed environment stack and a trail aresu�cient. Similar to CLP systems the trail is implemented as a value trail. It contains both the addressof the variable and its content.The VAMAI also needs less machine registers (see �g. 5). Machine registers are the goalptr andheadptr (pointer to the code of the calling goal and the head of the called clause, respectively), thegoalframeptr and the headframeptr (frame pointer of the clause containing the calling goal and thecalled clause, respectively) and the trailptr (top of trail). The headframeptr can be used as top ofstack pointer. Because every stack frame is a choice point, no choice point register is needed.Fig. 6 shows a stack frame for the stack of the VAMAI. Note that every stack frame is a choicepoint because all alternatives for a call are considered for the result of the computation. The stackframe contains the actual information for all the local variables of a clause. The goalptr points to theintermediate code of a goal (it is used to �nd the continuation after a goal has been computed), theclauseptr points to the head of the next alternative clause for the called procedure, and goalframeptrpoints to the stack frame of the calling procedure. goalframeptr is not strictly necessary because thestack frame size is contained in the VAMAI code.Fig. 7 describes the stack entry for a local variable. The �elds reference, domain, ref-len, alias-prevand alias-next are used to store the information derived for a variable analysing a single alternative ofthe current goal. The union �elds hold the union of all previously analysed alternatives.5

6 � trailptrtrailstack � goalframeptr� headframeptr?6 � goalptr� headptrcode areaFigure 4: VAMAI data areasregister usagegoalptr pointer to instructions of calling goalheadptr pointer to instructions of called clausegoalframeptr frame pointer of calling goalheadframeptr frame pointer of called clause, top of stacktrailptr top of trailFigure 5: VAMAI machine registersThe reference �eld connects the caller's variables with the callee's variables. Possibly aliased variablesare stored in a sorted list. The alias-prev and the alias-next �eld are used to connect the variables of thislist. The domain �eld contains all actual type information at any state of computation. Its contents maychange at each occurrence of the variable in the intermediate code. The ref-len �eld contains the lengthof the reference chain. After analysing an alternative of a goal the union �elds contain the least upperbound of the informations of all alternatives analysed so far.2.5 Handling of recursionThe information in the �elds of local variables of a clause's head is used for �xpoint computation. This�elds hold both the information that is available at the entry of the clause and the informations, thatare available for this local variables after a successful computation of the clause, i.e. the success pattern.When the interpreter reaches the last instruction of a clause (nogoal), the success pattern has to beupdated. The clause's head variable success pattern �elds are replaced with the least upper bound of itsactual entries (the old success pattern) and the new variable domains. The new domains (for the successdomain for variable n...domain for variable 1goalptr'clauseptrgoalframeptr'trailptr'Figure 6: structure of the stack frame6

referencedomain ref-lenalias-prev alias-nextunion-domain union-ref-lenunion-prev union-nextFigure 7: a local variable on the stackpattern) after the computation of the clause can be found on the stack.During abstract uni�cation of goal and head arguments the entry pattern for head local variables isstored in the intermediate code of the head, if this call is computed the �rst time. If the intermediatecode information contains already entry pattern information, then the old information is replaced by theleast upper bound of the new and the old information. If the information in the head's intermediate code�elds does not change, i.e. the new entry pattern contains more special or equal information than formerlyapplied patterns, there is no sense in a further recomputation of the clause. Instead, information aboutthe clause's actual success pattern is gained from the actual intermediate code �elds of the head. Thisinformation is then used in the variables occurring in the calling goal and the interpreter computes thenext alternative or the next subgoal of the calling clause, if there are no more alternatives to compute.Whenever the success pattern of a clause changes, a ag is set in this clause and all calling clauses of thisclause. This ag is used to mark these clauses for recomputation. Interpretation is iterated, until thesuccess patterns do not change any more.2.6 Instruction executionLike the VAM2P the VAMAI fetches a head instruction, fetches a goal instruction and executes thecombined instruction (e.g. the uni�cation of two variables). Only if a structure is combined with avariable, the instructions for the arguments of the structure are executed in single fetch mode. A typicalcombined uni�cation or structure uni�cation instruction executes the following subtasks:� If a goal variable is involved in the instruction, store the current value of this variable in theintermediate code.� Execute abstract uni�cation, eventually fail.� If a head variable is involved in the instruction and the new value of this variable is more generalthan the value stored in the intermediate code, then store this value in the intermediate code andset the changed entry pattern ag.If the combined call-goal instruction is executed with an unchanged entry pattern, the successpattern is merged into the union �eld and the other alternatives for this call are tried (arti�cial fail).Otherwise a new stack frame is allocated and this subgoal is called. If a call is combined with a nogoalinstruction, the union is constructed and the alternatives are tried. If the last alternative has beenexecuted, a single goal instruction is fetched. If this instruction is a goal instruction, the current valueof the union �eld is copied into the variable, the union �elds are initialized and the goal is called. If thisinstruction is a nogoal instruction, the success pattern is stored, the stack frame is popped and the nextcalling single goal instruction is fetched and executed.2.7 An exampleConsider the following program part: 7

top :-append([1,2], [3,4], L),write(L).append([], L, L).append([X|L1], L2, [X|L3]) :-append(L1, L2, L3).This program is compiled to the following VAMAI instructions:append1:head: nil, fsttmp(0), tmp(0), nogoalhead: list, fsttmp(0), fstvar(2), fstvar(1), list, tmp(0), fstvar(0),goal(append2), var(2), var(1), var(0), call, nogoal.append2:head: nil, fsttmp(0), tmp(0), nogoalhead: list, fsttmp(0), fstvar(2), fstvar(1), list, tmp(0), fstvar(0),goal(append2), var(2), var(1), var(0), call, nogoal.top: head:goal(append1), list, int(1), list, int(2), nil,list, int(3), list, int(4), nil, fstvar(0), call,builtin(write), var(0), nogoal.Below follows a simpli�ed trace of the analyser. Usually the interpreter executes in the combinedmode (e.g. call-goal, or uni�cation of two variables). The �rst clause of append1 is tried, it fails andthe second clause is tried. Some instructions are executed in combined mode and the elements of the listare executed in list uni�cation mode. Then the �rst clause of append2 is tried, it fails and the secondclause of append2 is tried. It calls recursively the �rst clause of append2, succeeds and executes thesecond clause which calls recursively append2. But this time the entry pattern is equal to the last oneand the success pattern is used. The end of the second clause of append2 is reached and the successpattern is stored. Now the end of the second clause of append1 is reached and the success pattern isstored. The success patterns have changed and a second iteration is started. In this small example thesecond iteration is identical to the �rst one since both clauses have a changed success pattern. But thistime no pattern changes and the analysis stops.***************** first iteration ******************call goal(append1)list nilfail goal(append1) true fail (list/nil)list list unifyint(1) fsttmp(0) unifylist h_fstvar(2) unifyint(2) unify listnil unify listlist h_fstvar(1) unifyint(3) unify listlist unify listint(4) unify listnil unify listg_fstvar(0) list unifynxttmp(0) unify listh_fstvar(0) unify list8

call goal(append2)g_nxtvar(2) nil unifyfail goal(append2) true fail (list/nil)g_nxtvar(2) list unifyfsttmp(0) unify listh_fstvar(2) unify listg_nxtvar(1) h_fstvar(1) unifyg_nxtvar(0) list unifynxttmp(0) unify listh_fstvar(0) unify listcall goal(append2)g_nxtvar(2) nil unifyg_nxtvar(1) fsttmp(0) unifyg_nxtvar(0) nxttmp(0) unifycall nogoalfail goal(append2) try all alternativesg_nxtvar(2) list unifyfsttmp(0) unify listh_fstvar(2) unify listg_nxtvar(1) h_fstvar(1) unifyg_nxtvar(0) list unifynxttmp(0) unify listh_fstvar(0) unify listcall goal(append2) use success patternnext nogoalfail goal(append2) last alternative triednext nogoalfail goal(append1) last alternative triednext builtin(write)next nogoal***************** second iteration ******************identical to the first iteration2.8 Incremental abstract interpretationThe VAMAI is also well suited for incremental abstract interpretation. Incremental abstract interpretationis similar to to the recomputation if a success pattern has changed. Incremental abstract interpretationstarts local analysis with all callers of the modi�ed procedures and interprets the intermediate code ofall dependent procedures. Interpretation is stopped when the derived domains are equal to the originaldomains (those derived by the previous analysis).To make incremental abstract interpretation possible, for each procedure a pointer to the caller of thisprocedure is stored in the VAMAI code. This pointer is used to �nd the top goal of the whole program.This pointer chain can be used to reconstruct the contents of the stack prior to the call of this procedure.Now abstract interpretation can be executed as usual. In general only a small part of the program isreinterpreted. In the worst case incremental interpretation can lead to the interpretation of the wholeprogram.2.9 Design alternativesThe current implementation uses one value trail. For each trailed variable the complete value of thevariable is stored together with the address of the variable. Since in most cases only a part of theinformation has changed a tagged trail can be used. The information in the variables is divided intogroups which usually change at the same time. Each group get a special tag and only the changed group9

together with the tag is stored on the trail. If the number of groups is very small, also more than onetrail can be used to avoid the tagging of values.We investigated also an implementation without trailing. The variable gets an additional �eld (calledin-�eld) which holds the value of a variable prior to the call. At a call referenced variables have to copytheir contents to the callee's variables. At call completion the contents have to copied back.It has to be evaluated if the duplication of clause bodies increases the accuracy of the analysis. Thesharing of the bodies eliminates the construction of the least upper bound of the bodies before codegeneration. An interesting alternative would also be the elimination of the stack and storing the stackframes directly in the intermediate code. Di�erent calls would be handled by the same stack frames inthe code.3 ResultsBefore developing the VAMAI we developed a prototype analyser in Prolog. Due to the single assignmentnature of Prolog the information about the program has to be stored in the data base using assert. Theprototype analyser is implemented as a deterministic recursive procedure so that it was possible to storeintermediate representations in Prolog data structures. The problem is that this structures are storedon the copy stack, destructive assignment must be replaced by copying part of the structures and thatour Prolog interpreter does not support garbage collection. So this interpreter was very slow and neededa stack size greater than 32 MB when analysing a program which was bigger than 50 clauses. So it isevident that an analyser based on the VAMAI is on average more than a factor of two hundred faster thanthe prototype analyser (see table 1). For evaluation of the VAMAI we used the well known benchmarksdescribed in [2]. These benchmarks were executed on a DECStation 5000/200 (25 MHz R3000) with40 MB Memory. A direct comparison with the GAIA system [5] is not possible, because only data forone benchmark we use is available and the domains are not comparable. Compensating the speed of thedi�erent benchmark machines, the VAMAI is about a factor of 20 faster.Prolog Prolog VAMAItest ms scaled scaleddet. append 648 1 1115naive reverse 789 1 639quicksort 977 1 2648-queens 815 1 241serialize 1630 1 206di�erentiate 2122 1 25query 781 1 194bucket 923 1 230permutation 732 1 503Table 1: global analysis time, factor of improvementThe VAMAI was integrated in the VAM1P compiler. Table 2 shows the improvement of the generatedcode due to global analysis. The high improvement for quicksort is only partly due to global analysis,the main improvement comes from a better clause indexing (built-in predicate indexing). To show thee�ciency of the compiler the compile time were compared to that of the VAM2P and SICStus intermediatecode translators [4]. The VAM1P compiler is about ten times slower than the VAM2P translator but abouttwo times faster than the SICStus compiler (see table 3). The Aquarius compiler [12] is by a factor of2000 slower than the VAM2P translator. A direct comparison is not possible since it is a three passcompiler which communicates with the assembler and linker via �les.The comparison of the VAM2P interpreter with the VAMAI shows that the size of the annotatedVAMAI intermediate code is about three times larger than the simple VAM2P intermediate code (seetable 4). 10

VAM2P VAM2P VAM1P VAM1Popttest ms scaled scaled scaleddet. append 0.25 1 26.1 26.1naive reverse 4.17 1 19.3 20.0quicksort 6.00 1 7.23 18.18-queens 65.4 1 12.4 13.5serialize 3.90 1 5.76 6.84di�erentiate 1.14 1 6.32 8.14query 41.7 1 7.58 9.70bucket 247 1 5.02 5.24permutation 2660 1 5.08 6.48Table 2: execution time, factor of improvement compared to the VAM2PVAM2P VAM2P VAM1P SICStustest ms scaled scaled scaleddet. append 5.78 1 11.43 21.5naive reverse 7.31 1 10.5 19.3quicksort 9.30 1 9.9 23.18-queens 9.18 1 11.6 19.7serialize 11.36 1 11.22 19.2di�erentiate 13.71 1 11.41 30.3query 21.05 1 7.5 13.4bucket 15.59 1 7.25 12.7permutation 4.88 1 8.88 18.1Table 3: compile time, compared to the VAM2P4 ConclusionWe presented the VAMAI, an abstract machine for abstract interpretation of Prolog. This abstractmachine has a very compact representation and short analysis times. The fast analysis and the storageof additional information enables the incremental global analysis of Prolog.AcknowledgementWe express our thanks to Thomas Berger, Anton Ertl and Franz Puntigam for their comments on earlierdrafts of this paper.References[1] Samson Abramsky and Chris Hankin, editors. Abstract Interpretation of Declarative Languages. EllisHorwood, 1987.[2] Joachim Beer. Concepts, Design, and Performance Analysis of a Parallel Prolog Machine. Springer,1989.[3] Maurice Bruynooghe. A practical framework for the abstract interpretation of logic programs.Journal of Logic programming, 10(1), 1991.[4] Mats Carlsson and J. Widen. SICStus Prolog user's manual. Research Report R88007C, SICS, 1990.11

VAM2P VAM2P VAMAItest bytes scaled scaleddet. append 288 1 3.63naive reverse 380 1 3.59quicksort 764 1 2.658-queens 536 1 2.95serialize 1044 1 3.33di�erentiate 1064 1 8.37query 2084 1 0.89bucket 996 1 1.96permutation 296 1 2.77Table 4: code size of intermediate representations[5] Baudouin Le Charlier and Pascal Van Hentenryck. Experimental evaluation of a generic abstractinterpretation algorithm for Prolog. ACM TOPLAS, 16(1), 1994.[6] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni�ed lattice model for staticanalysis of programs by construction or approximation of �xpoints. In Fourth Symp. Priciples ofProgramming Languages. ACM, 1977.[7] Saumya Debray. A simple code improvement scheme for Prolog. Journal of Logic Programming,13(1), 1992.[8] Manuel Hermenegildo, Richard Warren, and Saumya K. Debray. Global ow analysis as a practicalcompilation tool. Journal of Logic Programming, 13(2), 1992.[9] Andreas Krall and Thomas Berger. Fast Prolog with a VAM1P based Prolog compiler. In PLILP'92,LNCS. Springer 631, 1992.[10] Andreas Krall and Ulrich Neumerkel. The Vienna abstract machine. In PLILP'90, LNCS. Springer,1990.[11] Christopher S. Mellish. Some global optimizations for a Prolog compiler. Journal of Logic Program-ming, 2(1), 1985.[12] Peter Van Roy and Alvin M. Despain. High-performance logic programming with the AquariusProlog compiler. IEEE Computer, 25(1), 1992.[13] Jichang Tan and I-Peng Lin. Compiling dataow analysis of logic programs. In Conference onProgramming Language Design and Implementation, volume 27(7) of SIGPLAN. ACM, 1992.[14] Andrew Taylor. Removal of dereferencing and trailing in Prolog compilation. In Sixth InternationalConference on Logic Programming, Lisbon, 1989. MIT Press.[15] David H.D. Warren. An abstract Prolog instruction set. Technical Note 309, SRI International,1983.
12

