
Implementing an E�cient Java InterpreterDavid Gregg1, M. Anton Ertl2 and Andreas Krall21 Department of Computer Science,Trinity College, Dublin 2, Ireland.David.Gregg@cs.tcd.ie2 Institut f�ur Computersprachen, TU Wien,Argentinierstr. 8, A-1040 Wien,fanton|andig@complang.tuwien.ac.atAbstract. The Java virtual machine (JVM) is usually implementedwith an interpreter or just-in-time (JIT) compiler. JIT compilers pro-vide the best performance, but must be substantially rewritten for eacharchitecture they are ported to. Interpreters are easier to develop andmaintain, and can be ported to new architectures with almost no changes.The weakness of interpreters is that they are much slower than JIT com-pilers. This paper describes work in progress on a highly e�cient Javainterpreter. We describe the main features that make our interpreter ef-�cient. Our initial experimental results show that an interpreter-basedJVM may be only 1.9 times slower than a compiler-based JVM for someimportant applications.1 IntroductionThe Java Virtual Machine (JVM) is usually implemented by an interpreter ora just-in-time (JIT) compiler. JIT compilers provide the best performance butmuch of the compiler must be rewritten for each new architecture it is portedto. Interpreters, on the other hand, have huge software engineering advantages.They are considerably smaller and simpler than JIT compilers, which makesthem faster to develop, cheaper to maintain, and potentially more reliable. Mostimportantly, interpreters are portable, and can be recompiled for any architec-ture with almost no changes.The problem with existing interpreters is that they run most code muchslower than compilers. The goal of our work is to narrow that gap, by creatinga highly e�cient Java interpreter. If interpreters can be made much faster, theywill become suitable for a wide range of applications that currently need a JITcompiler. It would allow those introducing a new architecture to provide rea-sonable Java performance from day one, rather than spending several monthsbuilding a compiler.This paper describes work in progress on a fast Java interpreter. In section2 we introduce the main techniques for implementing interpreters. Section 3describes the structure of our interpreter, and our main optimizations. Section 4presents some preliminary experimental results, comparing our interpreter withother JVMs. Finally, in section 5 we draw conclusions.

2 Virtual Machine InterpretersThe interpretation of a virtual machine instruction consists of accessing argu-ments of the instruction, performing the function of the instruction, and dis-patching (fetching, decoding and starting) the next instruction. The most e�-cient method for dispatching the next VM instruction is direct threading [Bel73].Instructions are represented by the addresses of the routine that implementsthem, and instruction dispatch consists of fetching that address and branchingto the routine (see �g. 1). Direct threading cannot be implemented in ANSI Cand other languages that do not have �rst-class labels, but GNU C providesthe necessary features. Implementors who restrict themselves to ANSI C usuallyuse the giant switch approach (see �g. 2): VM instructions are represented byarbitrary integer tokens, and the switch uses the token to select the right routine.void engine() {static Inst program[] = { &&add /* ... */ };Inst *ip; int *sp;goto *ip++;add:sp[1]=sp[0]+sp[1]; sp++; goto *ip++;} Fig. 1. Direct threading using GNU C's \labels as values"void engine() {static Inst program[] = { add /* ... */ };Inst *ip; int *sp;for (;;)switch (*ip++) {case add:sp[1]=sp[0]+sp[1]; sp++; break;/* ... */}} Fig. 2. Instruction dispatch using switchWhen translated to machine language, direct threading typically needs threeto four machine instructions to dispatch each VM instruction, whereas the switchmethod needs nine to ten [Ert95]. The execution time penalty of the switchmethod is caused by a range check, by a table lookup, and by the branch to thedispatch routine. In addition, indirect branches are more predictable in threadedcode interpreters than those in switch based interpreters which leads to far fewerpipeline stalls and shorter running times on current architectures.

3 Implementing a Java InterpreterWe are currently building a fast threaded code interpreter for Java. Rather thanstarting from scratch, we are building the interpreter into an existing JVM.We started working with the CACAO [KG97,Kra98] JIT compiler based 64-bitJVM. Therefore, we used the infrastructure available from the JIT compiler andimplemented a 64-bit interpreter. But it is our intention that it will be possibleto plug our interpreter into any existing JVM. For this reason, we are de�ninga standard interface which describes a set of services that the wider JVM mustprovide for our interpreter.
Instruction Interpreter

generatordefinition

Threaded code
interpreter

Bytecode

translator

Java application
bytecode

VM instruction
formats

Threaded codeFig. 3. Structure of the Interpreter SystemFigure 3 shows the structure of our interpreter system. It is important to notethat we don't interpret Java byte code directly. Instead, the byte code is trans-lated to threaded code. In the process we also apply optimizations to make thethreaded code easier to interpret. Also important is that we do not write all thecode in the interpreter ourselves. Instead, we are building an interpreter genera-tor, which constructs an e�cient interpreter from a speci�cation of the behaviorof each instruction. The following subsections describe the major components inmore detail.3.1 The Byte Code TranslatorThe main goal of the translator is to remove complex and expensive operationsfrom the interpreter, and instead perform these operations once at translationtime1. The simplest, and most important example of this is the translation frombyte code to threaded code. Like a JIT compiler translates byte code from a1 This is the RISC principle of dealing with complex and di�cult operations in thecompiler, to allow a simpler, faster processor implementation. A processor is a hard-ware implementation of an interpreter, and many principles of processor design canbe applied to interpreters.

complete method to machine code, our translator transforms byte code intothreaded code. To interpret a byte code the interpreter must look up the addressof the routine that implements the VM instruction in a table. When translatingto threaded code, we perform that lookup just once, and replace the byte codewith the address. Thereafter, we can interpret the threaded code without anytable lookups. Note that the threaded code is larger than the original byte code.An important research question is whether the bene�ts of these optimizationscould be outweighed by an increase in data cache misses, due to threaded codethat occupies more memory.The byte code translator also replaces di�cult to interpret instructions withsimpler ones. For example, we replace instructions that reference the constantpool, such as LDC, with more speci�c instructions and immediate, in-line ar-guments. We follow a similar strategy with method �eld access and methodinvocation instructions. When a method is �rst loaded, a stub instruction isplaced where its threaded code should be. The �rst time the method is invoked,this stub instruction is executed. The stub invokes the translator to translate thebyte code to threaded code, and redirects itself to point to the �rst instructionof the threaded code.In the process of translation, we rewrite the instruction stream to removesome ine�ciencies and make other optimizations more e�ective. For example,the JVM de�nes several di�erent load instructions based on the type of data tobe loaded. In practice many of these, such as ALOAD and LLOAD can be mapped tothe same threaded code instruction. These transformations reduce the numberof VM instructions and makes it easier to �nd common patterns (for instruc-tion combining). Another simple optimization is based on the fact that manyinstructions in the JVM take several immediate bytes as operands. These areshifted and OR-ed together to form a larger integer operand. We perform thiscomputation once at translation time, and use larger integer immediates in thethreaded code.One implication of translating the original byte code is that the design prob-lems we encounter are closer to those in a just-in-time compiler than a traditionalinterpreter. Translating also requires a small amount of overhead. Translatingallows us to speed up and simplify our interpreter enormously, however. OriginalJava byte code is not easy to interpret e�ciently.3.2 OptimizationsThe CACAO JIT compiler has an analysis to compute the necessary informationto remove bound checks. We reused this analysis to implement bound checkremoval in the interpreter. We de�ned two sets of array access instructions, onewith bound checks and one without bound checks. Depending on the results ofthe analysis the right instruction is chosen.The CACAO compiler does null pointer checks using the hardware. Thisfeature is hardware dependent and not suitable for interpreters. To evaluate thecost of software null pointer checks we generated a version of the interpreterwithout null pointer checks.

3.3 Instruction De�nitionThe instruction de�nition describes the behavior of each VM instruction. Thede�nition for each instruction consists of a speci�cation of the e�ect on the stack,followed by C code to implement the instruction. Figure 4 shows the de�nitionof IADD. The instruction takes two operands from the stack (iValue1,iValue2),and places result (iResult) on the stack.IADD (iValue1 iValue2 -- iResult) 0x60{ iResult = iValue1 + iValue2;} Fig. 4. De�nition of IADD VM instructionWe have tried to implement the instruction de�nitions e�ciently. For exam-ple, in the JVM operands are passed by pushing them onto the stack. Theseoperands become the �rst local variables in the invoked method. Rather thancopy the operands to a new local variable area, we keep local variables and stackin a single common stack, and simply update the frame pointer to point to the�rst parameter on the stack. To correctly update the stack and frame pointeron calls and returns using this scheme, one needs to compute several pieces ofinformation about stack heights and numbers of local variables. We compute thisinformation once at translation time, and thereafter the handling of parametersduring interpretation is much more e�cient.One complication in our instruction speci�cation is that it was originally de-signed for Forth. In this language, the number of stack items produced and/orconsumed by a given VM instruction is always the same. Java has several VMinstructions that consume a variable number of stack items, however. For exam-ple, the instruction to create a multidimensional array (MULTIANEWARRAY) takesa number of items from the stack equal to the number of parameters of thearray. Similarly, the various method invocation instructions consume a numberof stack items equal to the number of parameters. Currently, we have no wayto cleanly express this in our instruction de�nition. One possibility is to createseparate VM instructions for each possible number of stack items consumed.This does not scale however, since in theory there can be almost any number ofparameters. Our current solution is to manipulate the stack pointer directly inthe instruction speci�cation.3.4 Interpreter GeneratorThe interpreter generator is a program which takes in an instruction de�nition,and outputs an interpreter in C which implements the de�nition. The interpretergenerator translates the stack speci�cation into pushes and pops of the stack,and adds code to invoke following instructions.

There are a number of advantages of using an interpreter generator ratherthan writing all code by hand. The error-prone stack manipulation operationscan be generated automatically. Optimizations can easily be applied to all in-structions. For example, the fetching of the next instruction can be moved upthe code (interpreter pipelining [HA00]). It is easy to have both a threaded codeand switch-based version of the interpreter. Specifying the stack manipulationat a more abstract level also makes it simpler to change the implementation ofthe stack. For example, our interpreter keeps one stack item in a register. Itis nice to be able to vary the number of cached stack items without changingeach instruction speci�cation. The generator also allows us to add tracing andpro�ling code trivially, and easily disassemble the threaded code.The main advantage of the generator is that it allows more complicated opti-mizations such as automatic instruction combining or instruction specialization.Combining replaces a common sequence of VM instructions with a single \super"instruction [Pro95]. For common operands specialization uses di�erent instruc-tions to eliminate the operand decoding overhead. Combining greatly increasesthe number of VM instructions, making maintenance more di�cult if done manu-ally. The generator can create these combinations automatically. Using the stackspeci�cations, it also optimizes stack operations for combined instructions.4 Preliminary Experimental ResultsOur basic thesis is that interpreter based JVMs can be so fast that at least forsome applications they are not very much slower than a JIT compiler. To testthe performance of a simple, e�cient threaded-code interpreter implementationof the JVM we compared it with the CACAO JIT compiler, with an interpreterand two di�erent JIT compilers from COMPAQ, with an interpreter from OSFand with the KAFFE interpreter on di�erent processors. CACAO is one of thefastest available JVM implementations and for computationally intensive pro-grams provides 42% to 82% of the performance of optimized C code [Kra98].Our two main benchmarks are javac and db from the SPECjvm98 bench-mark suite. The javac benchmark is the Java compiler from the JDK 1.0.2. Thedb benchmark performs a sequence of add, delete, �nd and sort operations on amemory resident database. We also tested two computationally intensive mini-benchmarks sieve and suml. The �rst of these is the well-known prime numbercomputation program and suml is the single pathological loop flong i, l1,l2; for (i = l1 = l2 = 0; i > 0; i--) fl1++; l2--;gg that was designedto maximally stress an interpreter based JVM.Table 1 shows the run time of our benchmarks relative to the CACAO JITcompiler on Alpha 21064a and Alpha 21164a based workstations. The resultsfor the SPEC benchmarks are surprisingly good, with our interpreter taking notmuch more than twice the time of the CACAO just-in-time compiler and fasterthan some other JIT compilers. This result sharply contradicts the widespreadbelief that interpreter based JVMs are inherently slow and will always performmany times slower than JIT compilers. We examined the proportion of time

21064a javac db sieve sumlCACAO native 1.00 1.00 1.00 1.00CACAO int 2.12 2.29 10.16 39.91COMPAQ JVM 1.1.4 native 13.14 23.65 2.04 3.85COMPAQ JVM 1.1.4 int 15.80 27.50 22.51 104.88OSF JVM 1.0.1 int 29.06 156.4221164a javac db sieve sumlCACAO native 1.00 1.00 1.00 1.00CACAO int 2.27 2.10 17.54 25.08COMPAQ JVM 1.3.1 native 5.01 2.52 3.23KAFFE 1.0.5 int 19.57 63.47 93.21Table 1. Relative performance of JIT compilers and interpretersspent in native functions rather than executing byte codes. We found that bothprograms spend about 30% of their time in native functions (synchronization,garbage collection). Both the interpreter and JIT compiler have to spend thesame amount of time in native functions. Therefore, even though the JIT com-piler executes byte codes about six times as fast as the interpreter for theseprograms, the overall speedup is not much more than a factor of two.The results for sieve are rather less encouraging, showing the interpreterto be ten to seventeen times slower than the JIT compiler. Not only does theJIT compiler avoid the expensive overhead of dispatching instructions, it is alsoable to optimize array accesses in the inner loop with pointer arithmetic. Thissuggests that interpreters are not at all suited to computationally intensive code.Finally, the suml benchmark shows the worst case performance of interpreterbased JVMs. null bound null & boundrelative run time 0.995 0.976 0.971Table 2. E�ects of optimizations on sieveTable 2 shows the e�ects of di�erent optimizations on the sieve benchmark.Whereas the elimination of null pointer checks only gives a small speedup of0.5%, the elimination of array bound checks gives a speedup of 2.5%. The bene�tof these optimizations is quite small compared to speedups of more than 30%achievable by JIT compilers using these optimizations.Figure 5 shows the potentials of instruction combination. The left graphgives the number of all possible used superinstructions for lengths of up to fourinstructions. As javac is a bigger program more di�erent combinations exist.The right graph shows the speedups for javac and db on di�erent processorsand di�erent length of superinstructions. For all programs db has been used astraining input for the instruction combiner. The Alpha 21064a has a 16 Kbytedirect mapped instruction cache, the Alpha 21264 has a 64 Kbyte two way setassociative instruction cache. For small caches exhaustive instruction combiningcan lead to cache trashing. For the Alpha 21264 the gap between interpreter andJIT compiler can be reduced to a factor of 2.07 for javac and 1.88 for db.

db

javac

supinst. length

superinsts

1 2 3 4
0

500

1000

1500

2000

2500

21264 javac

21264 db

21064a javac
21064a db

supinst. length

speedup

1 2 3 4
0.8

1.0

1.2

1.4

1.6

Fig. 5. Left: Number of superinstructions for di�erent maximum sequence lengths.Right: Speedup for di�erent programs and CPUs.5 ConclusionWe have described an e�cient interpreter based implementation of the Javavirtual machine. Our interpreter system translates the original Java byte codeto threaded code, greatly reducing the interpreter overhead. Our translator alsocomputes constants, targets and o�sets at translation time, allowing us to greatlysimplify the interpretation of many instructions, such as method invocations.Experimental results show that our interpreter based JVM may be not muchmore than 1.9 as slow as a good JIT based JVM for some general purposeapplications. For scienti�c code an interpreter cannot replace a compiler.References[Bel73] J. R. Bell. Threaded code. Communications of the ACM, 16(6):370{372, 1973.[Ert95] M. Anton Ertl. Stack caching for interpreters. In SIGPLAN '95 Conferenceon Programming Language Design and Implementation, pages 315{327, 1995.[HA00] Jan Hoogerbrugge and Lex Augusteijn. Pipelined Java virtual machine in-terpreters. In Proceedings of the 9th International Conference on CompilerConstruction (CC' 00). Springer LNCS, 2000.[KG97] Andreas Krall and Reinhard Gra. CACAO - a 64 bit JavaVM just-in-timecompiler. Concurrency: Practice and Experience, 9(11):1017{1030, 1997.[Kra98] Andreas Krall. E�cient JavaVM just-in-time compilation. In Proceedings ofthe 1998 International Conference of Parallel Architectures and CompilationTechniques, pages 205{212. IEEE Computer Society, October 1998.[Pro95] Todd Proebsting. Optimising an ANSI C interpreter with superoperators. InProceedings of Principles of Programming Languages (POPL'95), pages 322{342, 1995.

