
Correct Compilers for Correct Processors

Andreas Krall and Roland Lezuo
{andi,rlezuo}@complang.tuwien.ac.at

Vienna University of Technology, Institute of Computer Languages

January 21st 2014

This work is supported in part by the Austrian Research Promotion Agency (FFG) and by Catena DSP GmbH



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Overview

1 Motivation

2 The Modeling Language CASM

3 Compiler Verification

4 Processor Simulation

5 Preliminary Results and Summary

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Motivation

Computer controlled safety critical applications

Potentially can harm human life

Aaerospace, automotive, railway, industrial plants, medical
equipment

Require highest quality standards

Often formal verification of correctness required

Extreme high cost of quality audits

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Design Constraints

Constraints:

Performance

Power

Device costs

Development costs

Maintenance costs

Constraints

Often require application specific processors

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Safety critical applications

Software

Safety critical software is written in C, and (partially) verified

Hardware

Verified hardware designs are used for safety critical applications

Compiler

A traditional compiler breaks the chain of trust

Untrusted machine code

Again requires expensive verification

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Verified Compiler

Need for a verified compiler

First attempts of verification go back to 1967

Until now no fully verified optimizing compiler

Most advanced compiler: CompCert
(http://compcert.inria.fr/)

More than 50k lines of Coq (interactive theorem prover)

Supports a very large subset of C

HiPEAC 2014 Correct Compilers for Correct Processors

http://compcert.inria.fr/


Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Verification Techniques

Verifix was a compiler for the Alpha architecture

Part of Verifix was verified using abstract state machines
(ASM)

ASM have been used to specify the semantics of programming
languages,

Mature tools exists

CoreASM and AsmL (Microsoft Research)

We were not satisfied with the performance of existing
implementations

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

CASM Language

Formal foundations

Based on Gurevich’s abstract state machine (ASM) method.

Well suited to model cycled circuits

A synchronous parallel execution model (hardware is
inherently parallel)

Also allows to express sequential computation as a single
atomic step (allows to express what happens during a clock
cycle)

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Parallel and Sequential Composition

Parallel execution mode

rule swap = {

x := y

y := x

}

Sequential execution mode

rule swap =

let temp = x in

seqblock

x := y

y := temp

endseqblock

Semantic: create update set swaping values of x and y

rule caller =

call swap

Caller can not distinguish which
swap was executed

Semantic: merge swap’s update set with the one of caller

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Specifying an Instruction

rule andi(addr : Int) =

let rs = PARG(addr , FV_RS) in

let rt = PARG(addr , FV_RT) in

let imm = PARG(addr , FV_IMM) in

if rt != 0 then

GPR(rt) := BVand(32, GPR(rs),

BVZeroExtend(imm , 16, 32)))

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Modeling a Pipeline

enum PipelineStages = { ID , EX , MEM , WB }

enum PipelinePhases = { begin , end }

function Pipeline : PipelineStages -> RuleRef

rule execute_pipeline =

seqblock

forall s in PipelineStages do // begin

let op = Pipeline(s) in // begin

if op != undef then // begin

call (POP(op))(op , s, begin) // begin

forall s in PipelineStages do //end

let op = Pipeline(s) in //end

if op != undef then //end

call (POP(op))(op , s, end) //end

endseqblock

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Modeling an Instruction

rule andi(addr:Int , stage:Int , phase:Int) = {

if stage = ID and phase = end then

let rs = PARG(addr , FV_RS) in

let rt = PARG(addr , FV_RT) in

let imm = PARG(addr , FV_IMM) in {

call(ID_READ_OP1 )(rs)

IDOP2 := BVZeroExtend(imm , 16, 32)

IDRESREG := rt

}

if stage = EX and phase = begin then

EXRES := BVand (32, EXOP1 , EXOP2)

if stage = WB and phase = begin then

call (WRITE_REGISTER )(WBRESREG , WBRES)

}

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

CASM Implementations

Three different implementations have been developed:

Interpreter

Optimizing source to source compiler C/C++

Interpreter for symbolic execution (traces in TPTP format)

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Compiler Verification

Multiple techniques used

Verified compiler (frontend and analyses)

Translation validation (backend)

Cooperative compiler

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Frontend Verification

Hydra analysis and transformation specification language

Set based language

Specification of intermediate representations

Specification of analyses (fix point iterations)

Specification of transformations

Concise specifications, easy to verify manually or
semiautomtically

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Translation Validation

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Example Pass: Instruction Selection

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Simulation Proofs

p P SL C ppq P TL

JpKSL JC ppqKTL

predicates predicates

compile

SL semantics (ASM) TL semantics (ASM)
?

Æ

symbolic execution symbolic execution

Theorem Prover

A compilation is correct iff JpKSL Æ JC ppqKTL
(Æ: restricted simulation fl equality in compiler correctness)

HiPEAC 2014 Correct Compilers for Correct Processors



Example

P
rogram

MOV 0x03, R1

ADD R0, R1, R2

A
S

M
m

o
d

el

seqblock

RESULT := ADD(3, OP(1))

endseqblock

seqblock

REG(1) := 3

REG(2) := ADD(REG(0), REG(1))

endseqblock

P
red

icates

OP(1, sym0).

ADD(sym0, 3, sym1).

RESULT(sym1).

REG(1,3).

REG(0, sym2).

ADD(sym2, 3, sym3).

REG(2, sym3).



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Correctness of Instruction Selection

AST Machine language

MOV 0x03, R1

ADD R0, R1, R2

Registermapping

R0: OP1

R1: int_const 3

R2: AST result

Correctness (simplified)

@op : regmappopq ” op ùñ regmappresultAST q ” result

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Symbolic execution of ASM models

Goal

Generate (first-order) predicates of semantic transformation.

Common semantic vocabulary modeled as external functions

Update f plq :“ u
predicate
ÝÝÝÝÝÑ f pl , uq.

Invocation of external function f paq
predicate
ÝÝÝÝÝÑ f pa, rq.

If f plq ” undef :

create symbol s, change f plq :“ s
predicate
ÝÝÝÝÝÑ f pl , sq.

Correctly handle explicitly set undef values

ñ Set of predicates over common semantic vocabulary and
symbolic values

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Example Proof

From symbolic execution:

OP(1, sym0).

ADD(sym0, 3, sym1).

RESULT(sym1).

REG(1,3).

REG(0, sym2).

ADD(sym2, 3, sym3).

REG(2, sym3).

From Registermapping:

sym0 = sym2.

To prove:

sym1 = sym3?

Proof done by theorem prover (Vampire, VanHelsing)

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Processor simulation

Instruction set simulator:

Interpreting simulator

Low start up time (loading of application program)

High simulation time

Compiling simulator

Each application program is compiled to a specialized
simulator

High start up time (compilation of application and specialized
simulator)

Low simulation time

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Interpreting simulator

MIPS ELF binary
+

C library stubs

gcc Toolchain

compiled

CASM models

ELF loader

instruction decoderC library

stubs

Host C libraryHost
File System

BitVector
Operations

Library

Compile CASM to
C++

Link with C++
runtime

Interface MIPS
syscall with host C
library

Link simulatee with
C library stubs
(using syscall)

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Simulator verification (by symbolic execution)

(symbolic)
initial state

specification
model

pipelined
model

final state final state

?
”

Execution models

Proofs are trivial

Additionally check
pipeline and
execution models

Can also proof
operand forwarding
to be correct

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Evaluation of the MIPS CASM models

Specification Models

600 LOC for instructions

60 LOC for execution model

50 LOC for state, and
memory access helpers

Written in 2 days

Pipeline Models

1500 LOC for instructions

400 LOC for each pipeline
model (forwarding and
bubbling)

1 day to create forwarding
model

15 min to derive bubbline
pipeline model

Pipelined instruction models copy’n’paste error all caught by model
verification

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Preliminary Results

CASM language:

Definition of the statically typed CASM language
CASM compiler
CASM interpreter
CASM symbolic execution engine

Proofs (LLVM and VLIW compiler):

Instruction selection
Register allocation
Instruction scheduling
Software pipelining

Simulator:

Processor models for MIPS and VLIW architectures
Interpreting simulator
Compiling simulator

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Performance of CASM compiler (relative to compiler)

trivial

sieve
quicksort

gray
fibonacci

bubblesort

101

102

103

1
5
.7

3

1
6

1
.2

9 3
8

6
.1

1

6
5

3
.2

7

7
8

7
.3

6

2
,4

8
6
.8

5

1
3
.2 2

0
.2

6

1
5
.6

1

1
.8

2

9
0

5
.1

5
.2

3

3
1
.6

4

1
.3

7 2
.0

7

CoreASM CASM-i AsmL

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Performance of instruction selection verification

IR CASM ML CASM Traces & Prover Total

Files 1904 1904 2124
Lines 747602 29597978 5887294

Time 8.002 s 19.148 s 81.190 s 284.200 s

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Performance of instruction set simulator

About 1 Mhz for interpreting simulator

About 3 Mhz for compiling simulator

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Summary

ASM models for machine language and compiler IR

Symbolically evaluate ASM models

Use simulation proofs to show correctness of instruction
selection

Use very same models and an ASM to C++ compiler for fast
cycle-accurate simulation

Working on backend generation from ASM model

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Conclusion

Using different levels of abstraction, verification of compilers
and processors can be done efficiently

It is often possible to improve already mature tools
(sometimes by orders of magnitude)

Formal modeling reduces design and evaluation time for
application specific processors and the corresponding tool
chain

Verification leads to better compilers and processors at lower
cost

All compilers should be verified

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Literature

More detailed information

CASM: Implementing an Abstract State Machine based
Programming Language (ATPS’13)

A Unified Processor Model for Compiler Verification and
Simulation using ASM (ABCZ’12)

Using the CASM Language for Simulator Synthesis and Model
Verification (RAPIDO’13)

CASM - Optimized Compilation of Abstract State Machines
(LCTES’14)

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Acknowledgements

This work would not have been possible without the contribution of

Dominik Inführ
Roland Lezuo
Philipp Paulweber
Richard Plangger
Dietmar Schreiner

This work was supported in part by the Austrian Research
Promotion Agency (FFG) and by Catena DSP GmbH

HiPEAC 2014 Correct Compilers for Correct Processors



Motivation
The Modeling Language CASM

Compiler Verification
Processor Simulation

Preliminary Results and Summary

Thanks

Thank you for your attention!

HiPEAC 2014 Correct Compilers for Correct Processors


	Motivation
	The Modeling Language CASM
	Compiler Verification
	Processor Simulation
	Preliminary Results and Summary

