
Ontology-Driven Guidance for Requirements
Elicitation

Stefan Farfeleder1, Thomas Moser2, Andreas Krall1, Tor St̊alhane3,
Inah Omoronyia4, and Herbert Zojer5

1 Institute of Computer Languages, Vienna University of Technology
{stefanf,andi}@complang.tuwien.ac.at

2 Christian Doppler Laboratory ”Software Engineering Integration for Flexible
Automation Systems”, Vienna University of Technology

thomas.moser@tuwien.ac.at
3 Department of Computer and Information Science,

Norwegian University of Science and Technology
stalhane@idi.ntnu.no

4 Irish Software Engineering Research Centre, University of Limerick
inah.omoronyia@lero.ie

5 Infineon Technologies Austria AG
herbert.zojer@infineon.com

Abstract. Requirements managers aim at keeping their sets of require-
ments well-defined, consistent and up to date throughout a project’s life
cycle. Semantic web technologies have found many valuable applications
in the field of requirements engineering, with most of them focusing on
requirements analysis. However the usability of results originating from
such requirements analyses strongly depends on the quality of the orig-
inal requirements, which often are defined using natural language ex-
pressions without meaningful structures. In this work we present the
prototypic implementation of a semantic guidance system used to assist
requirements engineers with capturing requirements using a semi-formal
representation. The semantic guidance system uses concepts, relations
and axioms of a domain ontology to provide a list of suggestions the re-
quirements engineer can build on to define requirements. The semantic
guidance system is evaluated based on a domain ontology and a set of
requirements from the aerospace domain. The evaluation results show
that the semantic guidance system effectively supports requirements en-
gineers in defining well-structured requirements.

Keywords: requirements elicitation, domain ontology, elicitation guid-
ance, requirements engineering.

1 Introduction

A major goal of requirements engineering is to achieve a common understanding
between all project stakeholders regarding the set of requirements. Modern IT
projects are complex due to the high number and complexity of requirements,
as well as due to geographically distributed project stakeholders with different

G. Antoniou et al. (Eds.): ESWC 2011, Part II, LNCS 6644, pp. 212–226, 2011.
Springer-Verlag Berlin Heidelberg 2011



Ontology-Driven Guidance for Requirements Elicitation 213

backgrounds and terminologies. Therefore, adequate requirements management
tools are a major contribution to address these challenges. Current requirements
management tools typically work with a common requirements database, which
can be accessed by all stakeholders to retrieve information on requirements con-
tent, state, and interdependencies.

Requirements management tools help project managers and requirements en-
gineers to keep the overview on large amounts of requirements by supporting:
(a) Requirements categorization by clustering requirements into user-defined
subsets to help users find relevant requirements more quickly, e.g., by sorting
and filtering attribute values; (b) Requirements conflict analysis (or consistency
checking) by analyzing requirements from different stakeholders for symptoms
of inconsistency, e.g., contradicting requirements; and (c) Requirements tracing
by identifying dependencies between requirements and artifacts to support anal-
yses for change impact and requirements coverage. Unfortunately, requirements
management suffers from the following challenges and limitations:

– Incompleteness [5] of requirements categorization and conflict identification,
in particular, when performed manually.

– High human effort for requirements categorization, conflict analysis and trac-
ing, especially with a large number of requirements [5].

– Tracing on syntactic rather than on concept level: requirements are often
traced on the syntactic level by explicitly linking requirements to each other.
However, requirements engineers actually want to trace concepts, i.e., link
requirements based on their meaning, which can be achieved only partially
by information retrieval approaches like ”keyword matching” [11][12].

The use of semantic technologies seems promising for addressing these chal-
lenges: Ontologies provide the means for describing the concepts of a domain
and the relationships between these concepts in a way that allows automated
reasoning [18]. Automated reasoning can support tasks such as requirements cat-
egorization, requirements conflict analysis, and requirements tracing. While these
are very valuable efforts, we think what is missing here is additionally having
a proactive and interactive guidance system that tries to improve requirements
quality while actually eliciting requirements.

In this work we present the prototypic implementation of a semantic guid-
ance system used to assist requirements engineers with capturing requirements
using a semi-formal representation. Compared to the usual flow - write require-
ments, analyze requirements using the domain ontology, improve requirements
- our approach directly uses the domain ontology knowledge in a single step.
The semantic guidance system uses concepts, relations and axioms of domain
ontologies to provide a list of suggestions the requirements engineer can build
on to define requirements.

We evaluate the proposed semantic guidance systembased on a domain ontology
and a set of requirements from the aerospace domain. The evaluation results show
that the semantic guidance system supports the requirements engineer in defining
well-structured requirements. The tool managed to provide useful suggestions for
filling missing parts of requirements in the majority of the cases (>85%).



214 S. Farfeleder et al.

This work is organized in the following way: Section 2 presents related work.
Section 3 motivates our research; section 4 introduces our approach to ontology-
based guidance. Section 5 presents an evaluation of the tool and section 6 con-
cludes and gives ideas about future work.

2 Related Work

This section summarizes related work, going from the broad field of requirements
engineering to the more specific areas of elicitation guidance and finally pattern-
based requirements.

2.1 Requirements Engineering

Requirements Engineering is a discipline that deals with understanding, docu-
menting, communicating and implementing customers’ needs. Thus, insufficient
understanding and management of requirements can be seen as the biggest cause
of project failure. In order to improve this situation a systematic process to han-
dle requirements is needed [8]. The main activities of a requirements engineering
process can be defined as follows [15]:

– Requirements Elicitation. Requirements elicitation involves technical
staff working with customers to find out about the application domain, the
services the system should provide and the system’s operational constraints.
The goal is to gather raw requirements.

– Requirements Analysis and Negotiation. Requirements analysis and
negotiation is an activity which aims to discover problems and conflicts with
the requirements and reach agreement on changes to satisfy all system stake-
holders (people that are affected by the proposed system). The final goal is
to reach a common understanding of the requirements between all project
participants.

– Requirements Documentation and Validation. The defined require-
ments, written down in a software requirements specification, are validated
against criteria like correctness, completeness, consistency, verifiability, un-
ambiguity, traceability, etc.

– Requirements Management. Requirements management consists of man-
aging changes of requirements (keeping them consistent), e.g., by ensuring re-
quirements traceability (identification of interdependencies between require-
ments, other requirements, and artifacts).

These four steps can be summarized as requirements development. In addi-
tion, requirements management is a supporting discipline to control all require-
ments and their changes during the development life cycle and to identify and
resolve inconsistencies between the requirements and the project plan and work
products. One important method of requirements management is requirements
tracing. Traceability can be defined as the degree to which a relationship between



Ontology-Driven Guidance for Requirements Elicitation 215

two or more products of the development process can be established [1]. Gotel [7]
and Watkins [21] describe why requirements tracing can help project managers
in verification, cost reduction, accountability, change management, identification
of conflicting requirements and consistency checking of models.

2.2 Elicitation Guidance

There are several approaches to guide users to specify requirements. PROPEL
[3] is a tool that provides guidance to define property specifications which are
expressed as finite-state automata. For the definition of a property the user is
guided by a question tree, a hierarchical sequence of questions. There are separate
scope trees for a property’s behavior and its scope. Based on the answers, the
tool chooses an appropriate property template. A team of medical personnel and
computer scientists used the tool to formulate properties of medical guidelines.

Kitamura et al. [14] present a requirements elicitation tool that improves re-
quirements quality by analysis. The tool analyzes natural language requirements
and finds domain ontology entities occurring in the statements. According to
these occurrences and their relations in the ontology, requirements are analyzed
in terms of completeness, correctness, consistency and unambiguity. Suggestions
are provided to the user in order to improve these metrics, e.g., if the tool finds
that a domain concept is not defined in the requirements set, the suggestion
would be to add a requirement about the missing concept.

REAS [6] is a tool that interactively detects imprecisions in natural language
requirements. It consists of a spelling checker, a rule imposer, a lexical analyzer
and a parser. Some of the rules enforced by the tool are writing short require-
ments, using active voice instead of passive and avoiding possessive pronouns
(e.g., “it” and “its”). If the tool detects a violation of a rule, the requirements
engineer is asked to improve the offending expression.

Compared to our own approach, PROPEL only deals with a rather specific
kind of requirements. The other two approaches try to identify weaknesses after
the requirements have been defined and do not actively propose wording while
writing them.

2.3 Pattern-Based Requirements

Hull, Jackson and Dick [9] first used the term boilerplate to refer to a textual
requirement template. A boilerplate consists of a sequence of attributes and
fixed syntax elements. As an example, a common boilerplate is “〈system〉 shall
〈action〉”. In this boilerplate 〈system〉 and 〈action〉 are attributes and shall is
a fixed syntax element. It is possible to combine several boilerplates by means of
simple string concatenation. This allows keeping the number of required boiler-
plates low while at the same time having a high flexibility. During instantiation
textual values are assigned to the attributes of the boilerplates; a boilerplate
requirement is thus defined by its boilerplates and its attribute values. The



216 S. Farfeleder et al.

authors did not propose a fixed list of boilerplates1 but instead envisioned a
flexible language that can be adapted or enriched when necessary.

St̊alhane, Omoronyia and Reichenbach [20] extended boilerplates with a do-
main ontology by linking attribute values to ontology concepts. They adapted
the requirements analyses introduced by Kaiya [13] to boilerplate requirements
and added a new analysis called opacity. The requirement language used in this
work is based on their combination of boilerplates and the domain ontology.

Ibrahim et al. [10] use boilerplate requirements in their work about require-
ments change management. They define a mapping from boilerplate attributes
to software design artifacts (e.g., classes, attributes, operations) and add trace-
ability links between requirements and artifacts accordingly. There are several
other pattern based languages similar to boilerplates, e.g., requirements based
on EBNF grammars [19]. Denger et al. [4] propose natural language patterns
to specify requirements in the embedded systems domain. They include a meta-
model for requirement statements and one for events and reactions which they
use to check the completeness of the pattern language. Compared to boilerplate
requirements, their patterns seem to be a bit less generic, e.g., some of the non-
functional requirements used in our evaluation would be impossible to express.

Matsuo, Ogasawara and Ohnishi [16] use controlled natural language for re-
quirements, basically restraining the way in which simple sentences can be com-
posed to more complex ones. They use a frame model to store information about
the domain. There are three kind of frames. The noun frame classifies a noun
into one of several predefined categories. The case frame classifies verbs into
operations and contains the noun types which are required for the operation. Fi-
nally the function frame represents a composition of several simple operations.
The authors use these frames to parse requirements specifications, to organize
them according to different viewpoints and to check requirements completeness.
In contrast to domain ontologies, the frame-based approach seems to be harder
to understand and to adapt by non-experts.

3 Research Issues

There have been presented several approaches to use ontologies to analyze re-
quirements. These approaches try to measure quality aspects like completeness,
correctness and consistency on a set of requirements. In [20] there is an analysis
called opacity that basically checks if, for two concepts occurring in a require-
ment, there is a relation between them in the domain ontology. A conclusion
of our review of this analysis was that, rather than first writing an incorrect
requirement, then analyzing and improving it, a better approach would be to
actually suggest the very same domain information which is used for the opacity
analysis to the requirements engineer in the first place. There are two points to
this idea:

1 J. Dick maintains a list of suggestions at
http://freespace.virgin.net/gbjedi/books/re/boilerplates.htm though.

http://freespace.virgin.net/gbjedi/books/re/boilerplates.htm


Ontology-Driven Guidance for Requirements Elicitation 217

– We want a system that automatically proposes at least parts of the require-
ments by using information originating from a domain ontology.

– We want a system that exploits relations and axioms of the domain ontol-
ogy, i.e., a system that is more powerful than just a simple dictionary. The
relations and axioms of the domain ontology represent agreed upon knowl-
edge of stakeholders; by using them we hope to improve the precision of
requirements.

We believe that a tool supporting these two points will increase efficiency by
speeding up the process to get a high-quality requirements specification.

A semantic guidance system implementing these two points was added to our
boilerplates elicitation tool (DODT). To test our assumption, we used the tool
on requirements from the domain of the Doors Management System (DMS). The
DMS is a use case developed by EADS for experimenting with and evaluating
requirements engineering and modeling techniques within the CESAR project2.
The DMS controls the doors of an airplane; its main objective is to lock the
doors of an airplane while it is moving (in the air or on the ground) and to
unlock them when the airplane is parked on the ground. The system consists of
sensors that measure the state of the doors, actuators to lock and unlock the
doors and computing elements that control the entire system.

4 Guidance for Boilerplate Requirements

This section presents our approach for guiding the requirement engineer using
information of a domain ontology.

4.1 Boilerplate Requirements Elicitation

Figure 1 shows how requirements elicitation works using the boilerplates method.
To specify a requirement, one or more boilerplates are chosen by the require-
ments engineer. The attribute values refer to entities in the domain ontology.
During instantiation the attributes of the chosen boilerplates are set and a final
boilerplate-based requirement is produced. The semantic guidance system affects
the domain ontology, the attribute values and the instantiation. Its purpose is
to suggest potential and suitable values for the attributes to the requirements
engineer.

Table 1 lists the boilerplate attributes implemented by the tool. We reduced
the number of attributes compared to the original suggestions in [9] and [20].
This was done in accordance with user wishes who were uncomfortable with
the subtile differences between similar attributes and had problems deciding on
which to use.

2 http://cesarproject.eu/

http://cesarproject.eu/


218 S. Farfeleder et al.

���������	�

		����	�
�����

������
��	�����

���	��	��	���

���������	�
����������	

��������

Fig. 1. Boilerplate Requirements Elicitation Flow

Table 1. Boilerplate Attributes and Values

Attribute Description Example Value
〈action〉 A behavior that is expected to be fulfilled

by the system, or a capability
open the door

〈entity〉 A separate entity in the domain; not fitting
into 〈user〉 or 〈system〉

door status

〈number〉 A numeric value denoting a quantity 100
〈operational con-
dition〉

A condition or event that occurs during sys-
tem operation

the user tries to
open the door

〈system〉 Any part of the system; sub-class of entity door
〈unit〉 Unit of measurement millisecond
〈user〉 A person somehow interacting with the sys-

tem, e.g., operating it; sub-class of entity
pilot

4.2 Domain Ontology

The domain ontology contains facts about the domain that are relevant to re-
quirements engineering, i.e., facts that can be used to formulate and to analyze
requirements. The domain ontology should be usable to specify requirements for
several projects in the same domain. Thus adding concepts which are only rele-
vant to a single product should be avoided. See section 6 for a discussion about
combining several ontologies. This approach could be used to split the ontology
into a common domain part and a product-specific one.

There are three kinds of facts about the domain stored in the domain ontology.
The following list describes them. The tool uses an OWL[2] representation to
store ontologies. A detailed mapping to OWL can be found in Table 2.



Ontology-Driven Guidance for Requirements Elicitation 219

Table 2. Mapping of domain facts to OWL

Fact OWL Expressions
Concept(name, definition) Declaration(Class(concept-iri))

AnnotationAssertion(rdfs:label concept-iri name)
AnnotationAssertion(rdfs:comment concept-iri defini-
tion)

Relation(subj, label, obj) Declaration(ObjectProperty(label-iri))
AnnotationAssertion(rdfs:label label-iri label)
SubClassOf(subj-iri ObjectAllValuesFrom(label-iri obj-
iri))

SubClass(sub, super) SubClassOf(sub-iri super-iri)
Equivalence(concept1,
concept2)

EquivalentClasses(concept1-iri concept2-iri)

Deprecated(concept) AnnotationAssertion(deprecated-iri concept-iri 1)

Concept: A concept represents an entity in the problem domain. The entity can
be material (e.g., a physical component of the system) or immaterial (e.g., a
temporal state). OWL classes are used to represent concepts. The reason for
using classes instead of individuals is the built-in support for sub-classing.
A concept has two attributes, its name and a textual definition. The defini-
tion is intended to provide the possibility to check whether the correct term
is used.

Relation: A relation is a labeled directed connection between two concepts.
A relation contains a label which is expected to be a verb. The label, the
relation’s source and destination concepts form a subject-verb-object triple.
Relations are used for guidance (section 4.3). Relations map to OWL object
properties and object property restrictions.

Axiom: There are two types of axioms that are relevant to guidance: sub-class
and equivalence axioms. The first one specifies that one concept is a sub-class
of another concept, e.g., cargo door is a sub-class of door. This information is
used to “inherit” suggestions to sub-class concepts, e.g., the guidance system
infers the suggestion the user opens the cargo door from the base class’ the
user opens the door.
The equivalence axiom is used to express that two concepts having different
names refer to the same entity in the domain. An example from DMS is the
equivalence of aircraft and airplane. Ideally each real-world phenomenon
has exactly one name. However, due to requirements coming from different
stakeholders or due to legacy reasons, at times several names are required.
It is possible to mark a concept as being deprecated ; the tool will warn
about occurrences of such concepts and will suggest using an equivalent
non-deprecated concept instead.

In this work we assume the pre-existence of a suitable domain ontology. See [17]
for ways of constructing new domain ontologies. The tool contains an ontology



220 S. Farfeleder et al.

editor that is tailored to the information described here. We found this editor to
be more user-friendly than generic OWL editors like Protégé3.

4.3 Guidance

When filling the attributes of a boilerplate, the tool provides a list of suggestions
to the requirements engineer. The provided guidance depends on the attribute
the requirements engineer is currently filling, e.g., the suggestions for 〈system〉
will be completely different than for 〈action〉. The idea is to apply an attribute-
based pre-filter to avoid overwhelming the user with the complete list of ontology
entities. Typing characters further filters this list of suggestions to only those
entries matching the typed string.

It is not mandatory to choose from the list of suggestions; the tool will not
stop the requirements engineer from entering something completely different.
In case information is missing from the domain ontology, an update of the on-
tology should be performed to improve the guidance for similar requirements.
All changes to the domain ontology should be validated by a domain expert to
ensure data correctness.

There are three types of suggestions for an attribute; Table 3 provides an
overview over the suggestion types.

Concept: The tool suggests to use the name of a concept for an attribute.
The tool generates two variants, just the plain name and once prefixed with
the article “the”. The idea is that most of the times using “the” will be
appropriate but sometimes other determiners like “all” or “each” are more
suitable and are typed in manually.

Verb-Object: The tool uses a relation from the domain ontology to suggest
a verb phrase to the requirements engineer. The suggestion is the concate-
nation of the verb’s infinitive form4, the word “the” and the relation’s des-
tination object. This construction is chosen in order to be grammatically
correct following a modal verb like “shall”. An example from Figure 2 is the
suggestion check the door status.

Subject-Verb-Object: For this kind of suggestion the entire relation including
subject and object is taken into account. The suggestion text is “the”, the
subject, the verb conjugated into third person singular form, “the” and the
object. An example from Figure 2 is the suggestion the person tries to open
the door.

It is possible to combine several suggestions simply by selecting the first one,
manually typing in “and” and selecting another suggestion.

For the classification of concepts into different attributes a separate ontology,
the attributes ontology, is used. The attributes ontology contains an OWL class

3 http://protege.stanford.edu/
4 For building verb infinitives the morphological analyzer of the GATE project

(http://gate.ac.uk/) is used.

http://protege.stanford.edu/
http://gate.ac.uk/


Ontology-Driven Guidance for Requirements Elicitation 221

Table 3. Suggestion Types

Type Suggestion
Concept concept

the concept
Verb-Object verb (inf.) the object
Subject-Verb-Object the subject verb (3rd sing.) the object

��������
�		�


���������
��
��

����
��	��


��	��
�		�

���
	� �����	
	���

�		�
���	���������

��������

�		��
����


�����

	������	���
�	�����	�


�
������	� ����

�	�������	�	��

���������
����	�	��

�������� �������� 
�����

�	�

�����

�	�

���	��
�

Fig. 2. Domain Ontology and Attributes Ontology

per attribute and the sub-class axioms mentioned in Table 1. The domain on-
tology imports the attributes ontology to use its classes. Domain concepts are
linked to attributes by means of sub-class axioms which are stored in the domain
ontology.

An example for the semantic guidance system is given in Figure 2. The do-
main ontology is shown in the upper part of the figure, the attributes ontology
is below. The concept Doors Management System is a sub-class of class system,
which in turn allows the tool to suggest using the Doors Management System
for a boilerplate containing the attribute 〈system〉. The blue regions represent
verb-object and subject-verb-object suggestions in the domain ontology. Their
mapping to the attributes 〈action〉 and 〈operational condition〉 is inferred auto-
matically by the tool.

Figure 3 shows the boilerplates for two requirements and some of the sugges-
tions provided by the guidance system. The information that Doors Management
System is a system and that second and millisecond are values for attribute unit
is stored in the domain ontology itself. The suggestions check the door status and
determine the door unlockability are inferred from the domain ontology relations.
The knowledge to suggest verb-object pairs for the attribute action is a built-in
feature of the tool. The attribute operational condition turns out to be the most
difficult one in terms of providing useful suggestions. The reason for this is that



222 S. Farfeleder et al.

����������	�
�����
	�	�
��� �������������������	�
� 	
��
���
���������
	��

����������������	
	
��������		�

����		��
����������

������

���������
�����		�

���	���������
��������	���

�������������������	�
� �����
�
�����������
��������
���������
	��

����		��
����������

������

�����
�����		�
������

���	��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

Fig. 3. Boilerplates and Suggestions

there are many grammatical ways to describe conditions, a subject-verb-object
triple being only one of them. Therefore the tool does not only suggest those
triples for conditions; instead all concepts, verb-object pairs and subject-verb-
object triples are provided in order to use those phrases in conditions.

5 Evaluation

As mentioned before we evaluated the semantic guidance system with a domain
ontology and a set of requirements from the Doors Management System.

5.1 Setting

The use case contains a set of 43 requirements specified using natural language
text. Various types of requirements are included: functional, safety, performance,
reliability, availability and cost. Each requirement was reformulated into a boil-
erplate requirement using DODT. The semantic guidance system was used to
assist in filling the boilerplate attributes.

The domain ontology for DMS was specifically developed for usage with the
boilerplates tool. The data for the DMS ontology was initially provided by EADS
and was then completed by the authors. Table 4 lists the number of concepts,
relations and axioms of the DMS ontology.

Figure 4 shows the graphical user interface of the tool. At the top of the
interface boilerplates can be selected. The center shows the currently selected
boilerplates and text boxes for the attribute values of the requirements. The list
of phrases below the text boxes are the suggestions provided by the semantic
guidance system. Typing in the text boxes filters the list of suggestions. The tool
shows the textual definitions of the concepts as tooltips. Selecting a list entry
will add the text to the corresponding text box. The bottom of the interface lists
all requirements. Expressions that refer to entities from the domain ontology are



Ontology-Driven Guidance for Requirements Elicitation 223

underlined with green lines; fixed syntax elements of boilerplates with black.
If nouns missing from the domain ontology were to be seen, they would be
highlighted with the color red.

Table 5 present statistics about the suggestions produced by the guidance
system for the DMS ontology.

Table 4. Ontology Measurements

Entity Count
Concepts 107
Relations 70
Axioms 123

SubClass 108
to Concepts 15
to Attributes 93

Equivalence 15

Table 5. Guidance Suggestions

Type Count
Concept 212
Verb-Object 69
Subject-Verb-Object 101
Total 382

Table 6. Evaluation Results

Item Count
Requirements 43
Boilerplates 21
Attributes 120
Complete suggestions 36
Partial suggestions 39

Fig. 4. DODT Screenshot



224 S. Farfeleder et al.

5.2 Results

Table 6 lists the major results of the evaluation. For 43 requirements, we used
21 different boilerplates. The boilerplate which was used most often (16 times)
is 〈system〉 shall 〈action〉. The 43 boilerplate requirements have a total of 120
attributes. For 36 attributes out of 120 (30%) the semantic guidance system was
able to suggest the entire attribute value without any need for a manual change.
For another 59 attributes (57.5%) the guidance could suggest at least parts of
the attribute value. This leaves 25 attribute values (12.5%) for that the guidance
was no help. For partial matches, these are some of the reasons the attribute
values had to be modified:

– A different determiner is used than the suggested “the”, e.g., “a”, “each” or
“all”.

– The plural is used instead of singular.
– A combination of two or more suggestions is used.
– A subordinate clause is added, e.g., “each door that could be a hazard if it

unlatches”.

Reasons for no guidance are these:

– Numbers for the 〈number〉 attribute cannot be suggested.
– Words are used that do not exist in the domain ontology.

Future work will include setting up an evaluation to compare the elicitation
time with and without the semantic guidance system. However, due to the high
percentage where the guidance was able to help (>85%) we are confident that
efficiency improved, even though the presentation of explicit numbers has to be
postponed to future work.

We also hope to improve the quality of requirements using the tool. We did
a qualitative comparison of the original DMS requirements and the boilerplate
requirements. These are our findings:

– Boilerplate requirements encourage using the active voice. In our evaluation
the original requirement “Information concerning the door status shall be
sent from the Doors Management System to ground station. . . ” was turned
into “The Doors Management System shall send information concerning the
door status to ground station. . . ” 8 requirements were improved in this way.
In some cases missing subjects were added.

– Requirements like “There shall be. . . ” and “It shall not be possible to. . . ”
were changed into “The subject shall have” and “The subject shall not al-
low. . . ”. Such changes make it obvious what part of the system is responsible
to fulfill the requirement. To determine the right value for subject the origi-
nal stakeholders should be asked for clarification. Due to timing constraints
this was not possible and plausible values were inserted by the authors.

– During the requirements transformation we found that the original require-
ments used different expressions for seemingly identical things, e.g., “provi-
sion to prevent pressurization” and “pressure prevention means” or “airplane”



Ontology-Driven Guidance for Requirements Elicitation 225

and “aircraft”. Such synonyms are either stored as an equivalence axiom in
the domain ontology or, preferably, stakeholders agree upon the usage of one
term.

– Using boilerplates improved the overall consistency of the requirements. The
original requirements set contains a mixture of “must” and “shall”. While
using one or the other is probably a matter of taste, one form should be
picked and used consistently.

– The guidance system corrected a few typographic errors in the original re-
quirements, e.g., “miliseconds”.

We found the tool to be easy to use and user-friendly. This sentiment is shared
by the partners in the CESAR project who are also currently evaluating the tool.

6 Conclusion and Future Work

Requirements should be made as consistent, correct and complete as possible
to prevent detecting and correcting errors in later design phases. With respect
to the three points raised in the introduction about requirements engineering,
this work intends to be the foundation for further analyses, e.g., by facilitating
requirements categorization with ontology knowledge.

We presented a tool for the elicitation of boilerplate requirements that includes
a semantic guidance system which suggests concept names and phrases that were
built from relations and axioms of the domain ontology. The tool managed to
provide useful suggestions in the majority of the cases (>85%). We realize that
the tool needs to be evaluated in a larger context, i.e., more requirements and a
larger ontology. We will address this in our future research work.

The selection of suitable boilerplates for a requirement is not always trivial
and requires a bit of experience with the boilerplates method. Thus a feature we
want to explore and possibly add to the tool is the semi-automatic conversion
of natural language requirements into boilerplate requirements.

While creating the DMS ontology, we found there are concepts for which the
suggestions provided by the semantic guidance system really help but which
are not specific to the problem domain. The most prominent example are mea-
surement units like “second” or “kg”. So what we want to do is to collect such
entities into a separate ontology and to extend the tool to be able manage sev-
eral ontologies. This could be handled by adding OWL import declarations to
the “main” domain ontology. Such domain-independent ontologies can then be
easily reused for guidance in other domains.

Acknowledgments

The research leading to these results has received funding from the ARTEMIS
Joint Undertaking under grant agreement No 100016 and from specific national
programs and/or funding authorities. This work has been supported by the
Christian Doppler Forschungsgesellschaft and the BMWFJ, Austria.



226 S. Farfeleder et al.

References

1. IEEE Recommended Practice for Software Requirements Specifications. IEEE Std
830 (1998)

2. OWL 2 Web Ontology Language Direct Semantics. Tech. rep., W3C (2009),
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/

3. Cobleigh, R., Avrunin, G., Clarke, L.: User Guidance for Creating Precise and Ac-
cessible Property Specifications. In: 14th International Symposium on Foundations
of Software Engineering, pp. 208–218. ACM, New York (2006)

4. Denger, C., Berry, D., Kamsties, E.: Higher Quality Requirements Specifications
throughNatural LanguagePatterns. In: 2003 IEEE InternationalConference onSoft-
ware - Science, Technology and Engineering, pp. 80–90. IEEE, Los Alamitos (2003)

5. Egyed, A., Grunbacher, P.: Identifying Requirements Conflicts and Coopera-
tion: How Quality Attributes and Automated Traceability Can Help. IEEE Soft-
ware 21(6), 50–58 (2004)

6. Elazhary, H.H.: REAS: An Interactive Semi-Automated System for Software Re-
quirements Elicitation Assistance. IJEST 2(5), 957–961 (2010)

7. Gotel, O., Finkelstein, C.: An Analysis of the Requirements Traceability Problem.
In: 1st International Conference on Requirements Engineering, pp. 94–101 (1994)

8. Gottesdiener, E.: Requirements by Collaboration: Workshops for Defining Needs.
Addison-Wesley, Reading (2002)

9. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer, Heidelberg
(2005)

10. Ibrahim, N., Kadir, W., Deris, S.: Propagating Requirement Change into Software
High Level Designs towards Resilient Software Evolution. In: 16th Asia-Pacific
Software Engineering Conference, pp. 347–354. IEEE, Los Alamitos (2009)

11. Jackson, J.: A Keyphrase Based Traceability Scheme. IEEE Colloquium on Tools
and Techniques for Maintaining Traceability During Design, 2/1–2/4 (1991)

12. Kaindl, H.: The Missing Link in Requirements Engineering. Software Engineering
Notes 18, 30–39 (1993)

13. Kaiya, H., Saeki, M.: Ontology Based Requirements Analysis: Lightweight Seman-
tic Processing Approach. In: 5th Int. Conf. on Quality Software, pp. 223–230 (2005)

14. Kitamura, M., Hasegawa, R., Kaiya, H., Saeki, M.: A Supporting Tool for Re-
quirements Elicitation Using a Domain Ontology. Software and Data Technologies,
128–140 (2009)

15. Kotonya, G., Sommerville, I.: Requirements Engineering. John Wiley & Sons,
Chichester (1998)

16. Matsuo, Y., Ogasawara, K., Ohnishi, A.: Automatic Transformation of Organization
of Software Requirements Specifications. In: 4th International Conference on Re-
search Challenges in Information Science, pp. 269–278. IEEE, Los Alamitos (2010)

17. Omoronyia, I., Sindre, G., St̊alhane, T., Biffl, S., Moser, T., Sunindyo, W.: A
Domain Ontology Building Process for Guiding Requirements Elicitation. In: 16th
REFSQ, pp. 188–202 (2010)

18. Pedrinaci, C., Domingue, J., Alves de Medeiros, A.K.: A Core Ontology for Busi-
ness Process Analysis. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,
M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 49–64. Springer, Heidelberg (2008)

19. Rupp, C.: Requirements-Engineering und -Management. Hanser (2002)
20. St̊ahane, T., Omoronyia, I., Reichenbach, F.: Ontology-Guided Requirements and

Safety Analysis. In: 6th International Conference on Safety of Industrial Automated
Systems (2010)

21. Watkins, R., Neal, M.: Why and How of Requirements Tracing. IEEE Soft-
ware 11(4), 104–106 (1994)

http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/

	Ontology-Driven Guidance for Requirements Elicitation
	Introduction
	Related Work
	Requirements Engineering
	Elicitation Guidance
	Pattern-Based Requirements

	Research Issues
	Guidance for Boilerplate Requirements
	Boilerplate Requirements Elicitation
	Domain Ontology
	Guidance

	Evaluation
	Setting
	Results

	Conclusion and Future Work
	References


