
DODT: Increasing Requirements Formalism using
Domain Ontologies for Improved Embedded

Systems Development
Stefan Farfeleder

Institute of Computer Languages
Vienna University of Technology

stefan.farfeleder@tuwien.ac.at

Thomas Moser
CDL Flex

Vienna University of Technology
thomas.moser@tuwien.ac.at

Andreas Krall
Institute of Computer Languages
Vienna University of Technology
andi@complang.tuwien.ac.at

Tor Stålhane
Department of Computer and Information Science
Norwegian University of Science and Technology

stalhane@idi.ntnu.no

Herbert Zojer
Infineon Technologies Austria AG
herbert.zojer@infineon.com

Christian Panis
Catena Radio Design bv
cpanis@catena.nl

Abstract—In times of ever-growing system complexity and
thus increasing possibilities for errors, high-quality requirements
are crucial to prevent design errors in later project phases
and to facilitate design verification and validation. To ensure
and improve the consistency, completeness and correctness of
requirements, formal languages have been introduced as an
alternative to using natural language (NL) requirement descrip-
tions. However, in many cases existing NL requirements must
be taken into account. The formalization of those requirements
by now is a primarily manual task, which therefore is both
cumbersome and error-prone. We introduce the tool DODT
that semi-automatically transforms NL requirements into semi-
formal boilerplate requirements. The transformation builds upon
a domain ontology (DO) containing knowledge of the problem
domain and upon natural language processing techniques. The
tool strongly reduced the required manual effort for the transfor-
mation. In addition the quality of the requirements was improved.

I. INTRODUCTION

The potential for errors in the development of embedded
systems is coupled to system complexity which is increasing
year after year. Verification and validation (V&V) is used
both to prevent errors and to find and fix them. To be
able to test whether a system is behaving as intended, a
requirements specification to test against is needed. The quality
of the requirements specification decides how meaningful and
efficient V&V can be performed. From the viewpoint of V&V
a requirement should be precise, i.e., not open to interpretation,
and it should support automated verification to minimize costs.
Requirements specifications using NL have weaknesses in both
aspects as there is always the need for human interpretation.
Thus requirements languages based on a formalism are used

The research leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement No 100016 and from
specific national programs and/or funding authorities. This work has been
supported by the Christian Doppler Forschungsgesellschaft and the BMWFJ,
Austria.

more often in embedded systems instead, especially in safety-
critical environments.

However, in many cases the requirements engineer (RE)
must take into account existing NL requirements, e.g. needs
expressed by system stakeholders, or requirements adapted
from standard documents or re-used from previous projects.
To take advantage of requirements formalism these NL re-
quirements need to be converted into formal requirements. By
now the formalization of requirements is a primarily manual
task, which therefore is both cumbersome and error-prone.

In this work we present a semi-automated process to convert
NL requirements into a semi-formal representation called
boilerplates requirements. The process is implemented by our
tool DODT. Most of the work is done automatically by the
tool but at some points the RE needs to intervene. We include
an evaluation of the process on a set of requirements. The
results show the advantages of our process: for the majority
(60%) of the requirements the transformation can be done in
an almost fully automated way.

The remainder of this paper is structured as follows: Section
II discusses related work; section III motivates our research;
section IV describes our process; section V contains the
evaluation; and finally section VI concludes.

II. RELATED WORK

This section summarizes related work on Requirements
Engineering, Boilerplates and Natural Language Processing.

A. Requirements Engineering

Requirements Engineering is a discipline that deals with
understanding, documenting, communicating and implement-
ing customers’ needs. There is a gap between informal NL
requirements and requirements specified in a formal lan-
guage, e.g., first-order logic. Stakeholders prefer informal
requirements, because they can be understood and defined

978-1-4244-9756-0/11/$26.00 ©2011 IEEE

by everyone without training required. The downside is the
inherent imprecision and ambiguity of NL statements. Formal
languages provide vastly better possibilities for requirements
analysis and verification against system models, e.g., model
checking, but are difficult to use for non-experts.

There have been numerous approaches to transform NL re-
quirements into semi-formal and formal languages: into ACTL
(action based temporal logic) formulae [1]; into Use Case
Models [2]; into CSP process algebra [3]; into Circal process
algebra [4]; into executable LSCs (live sequence charts) [5];
into scenarios [6]; and into temporal logic formulae [7].

Our transformation approach aims at covering a broader
range of requirement statements. This includes requirements
which cannot be expressed formally at all. It achieves this by
being less ambitious in terms of formality.

B. Boilerplates

Hull, Jackson and Dick [8] first used the term boilerplate
to refer to a textual requirement template. A boilerplate
consists of a sequence of attributes and fixed syntax elements
(FSEs). As an example, a common boilerplate is “hsystemi
shall hactioni”. In this boilerplate hsystemi and hactioni
are attributes and shall is an FSE. It is possible to combine
several boilerplates by means of simple concatenation. This
allows keeping the number of required boilerplates low while
at the same time having a high flexibility. During instantiation
textual values are assigned to the attributes of the boilerplates.

Stålhane, Omoronyia and Reichenbach [9] extended boil-
erplates with a DO by linking attribute values to ontology
concepts. The requirement language used in this work is based
on their combination of boilerplates and the DO.

C. Natural Language Processing (NLP)

NLP refers to systems that analyze, attempt to understand,
or produce one or more human languages, such as English,
Japanese, Italian, or Russian [10]. Three important NLP
applications related to this work are (a) Part-Of-Speech (POS)
Tagging which categorizes the tokens of a sentence into
different types, (b) Stemming which finds the root (stem) of a
word for inflected forms, e.g., the singular for a plural word,
and (c) Syntax Parsing which analyzes the syntax of a sentence
and builds a syntax tree. Our tool uses the GATE1 framework
[11] for NLP. It provides a uniform interface to several NLP
algorithms. Among others the ANNIE POS tagger, the GATE
Morphological analyzer, and the OpenNLP Parser2 are used.

III. MOTIVATION

Our goal is to improve system development by increasing
requirements formalism. We use boilerplates because they
support automated requirement analysis and are usable for
most requirements while at the same time being as readable
as NL requirements. DODT supports the creation of new
boilerplate requirements. The RE selects boilerplates and the
tool provides suggestions gained from the DO.

1http://gate.ac.uk/
2http://incubator.apache.org/opennlp/

Fig. 1. DMS Domain Ontology

However, if the RE wants to transform existing NL require-
ments, a lot of manual work is still required which could
often be performed semi-automatically. For the requirement
“The passenger shall be able to open the door.” and the
boilerplate “huseri shall be able to hactioni” it is clear
to a human that the original requirement can be trivially
transformed into a boilerplate requirement by assigning “The
passenger” to huseri and “open the door” to hactioni. With the
current tool support the RE first needs to select the boilerplate
and then fill in the attributes, either by copy-and-paste or by
selecting from the list of suggestions.

We therefore concentrated our research on tool support
for better supporting this transformation. We expect the tool
to help with (a) selecting boilerplates and (b) filling in the
attributes. These two points are not entirely independent. If
more than one boilerplate fits, the “quality” of the entire
requirement depends on both the choice of boilerplates and
the resulting attribute values. We thus soon realized that a
promising approach is to try several boilerplates and resulting
attribute values, and to compare and order the results. We also
realized that not everything can be done automatically. Our
expectation is that the tool is able to reduce the amount of
manual work required from the RE who should be able to con-
centrate on the “difficult” cases, requiring major restructuring
of a sentence. Also, the RE should not be overwhelmed by the
choices he has to make. In order to increase the efficiency of
the transformation, we want to use simple yes-or-no questions
or lists with few entries to choose from.

For evaluation we applied the tool to requirements of the
Doors Management System (DMS) - a use case developed
by EADS for experimenting with and evaluating requirements
engineering techniques within the CESAR project3. DMS
controls the doors of an airplane. Its main objective is to lock
the doors of an airplane while it is moving and to unlock them
when the airplane is parked on the ground.

IV. SEMI-AUTOMATIC CONVERSION TO BOILERPLATES

This section describes DO and Transformation Process.

A. Domain Ontology

Our approach uses a DO which stores information: concepts,
relations and axioms. Please refer to [12] for more details
about the DO. Fig. 1 shows a small subset of the DMS
DO we used for the evaluation. The top part shows the

3http://cesarproject.eu/

Fig. 2. Transformation Process

concepts as nodes, and relations and axioms as edges. The
bottom part shows a special ontology, the attributes ontology,
which contains the boilerplate attributes as concepts. The
dotted arrows show the links between concepts and boilerplate
attributes, e.g., “passenger” is a huseri.

B. Transformation Process

Our process (Fig. 2) to transform NL requirements into
boilerplate requirements is semi-automatic. Most of the work
is done automatically but at some points the RE has to select
from a list of suggestions and finally to validate and correct
the results if necessary. The process inputs are manual work
of the RE, a set of boilerplates (BP), NLP techniques and DO.
The transformation process consists of six steps:

1) Sentence Selection (SS): A boilerplate requirement rep-
resents a single sentence. NL requirements which consist of
several sentences are split into several requirements. The tool
uses the GATE sentence splitter to detect sentence beginnings
and ends. If more than one sentence is detected, the RE is
asked to select the sentence to transform into the boilerplates
representation. In the evaluation we found that sometimes only
the first sentence is an actual requirement and that the follow-
ing sentences are comments, explanations or rationales. Such
information should be clearly separated from the requirement
statement, e.g., using an requirement attribute.

2) Typographic Error Correction (TEC): To correct typo-
graphic errors in the NL requirement, the DO concepts are
used as a dictionary. For any sequence of nouns (detected by
a POS tagger) which is not contained in the DO, the tool
computes the Damerau-Levenshtein distance [13] (the number
of single letter edits to get from one expression to another) to
each of the DO entities. If there are DO entities similar to the
noun sequence, i.e., below a threshold for the distance, the RE
is asked to select from a list of possible corrections.

3) Word Substitution (WS): The goal of this step is to trans-
form a requirement in such a way that matching boilerplates
can be found in the next step. User-defined substitution rules
are applied to replace expressions of the original requirement
with synonymous FSEs. The substitutions we used in our
evaluation are to replace occurrences of “must”, “should” and
“will” with the word “shall” in order to match our set of
boilerplates based upon “shall” and to replace “in case that”
with “if”. The actual transformations that should be applied
here strongly depend on the original NL requirements and
on the used boilerplates. Therefore the tool allows the RE to
configure the substitution rules.

4) Boilerplate Matching (BM): For each boilerplate the
tool searches all possible ways the boilerplate matches the
requirement. For the matching only FSEs are considered.
They match if identical words or punctuation exist in the
requirement. The text between FSEs will be assigned to
the attributes in the next step. A boilerplate can match at
several starting positions in a requirement and also in different
ways for the same starting position, e.g., for the boilerplate
“if hoperational conditioni ,” each comma following one
occurrence of “if” will be considered a different match. After
all matches have been found, conflicts between matches are
computed. Two matches conflict if they span overlapping parts
of the requirement. Then all combinations of match sets that
are maximal - in the sense that no further non-conflicting
matches can be added - are computed.

5) Attribute Value Splitting (AVS): In this step, text occur-
ring between FSEs is assigned to boilerplate attributes. When
there are two or more adjacent attributes, a decision has to be
made about where the text should be split. The tool iterates
over all possible ways (word boundaries) to split the text and
computes ratings. The rating is composed of a syntactic part
and a semantic part. The syntactic part checks if the splitting
agrees with the syntax tree of the requirement by increasing
the rating if the children of a syntax tree node are assigned to
the same attribute. The semantic part checks if the expressions
assigned to an attribute are semantically sound by using the
DO links from concepts to boilerplate attributes. The splitting
with the best rating is then used.

6) Ranking (RK): The BM step typically generates several
solutions on how to map the original NL requirement to the
boilerplate representation. It is the responsibility of the RE
to choose one of the proposed solutions. However, in order
to support the RE with this decision, the tool computes a
ranking of the solutions. This ordering is computed from the
percentage of the requirement text that could be transformed,
the number of words that could be matched with FSEs and
the quality of the matching between boilerplate attributes and
attribute values. huseri would be considered a better match
than hsystemi if the corresponding attribute value contains
“passenger” (linked to huseri in the DO).

After the six steps described above the RE can adjust the
requirement before saving it. Parts of the requirement which
could not be transformed are displayed by the tool. Step BM
creates a maximal matching which in some cases splits a
requirement into too many boilerplates. This is a deliberate
design choice as removing an extra boilerplate requires much
less effort than adding a missing one. Refinement links are
automatically created to connect the original NL requirement
with the new one in order to provide requirements traceability.

V. EVALUATION

The DMS use case contains 43 NL requirements: functional,
safety, performance, reliability, availability and cost. For each
of the 43 requirements we used the tool to suggest a trans-
formation into boilerplates. We measured how much and what

TABLE I
ONTOLOGY MEASUREMENTS

Entity Count
Concepts 107
Relations 70
Axioms 123

TABLE II
RESULTS DATA

Item Result
NL Reqs. 43
BP Reqs. 47
Typogr. errors corrected 8
avg. # Suggestions 2.74
Unmodified Reqs. 60%

kind of interaction of the RE was necessary. Finally we com-
pared the resulting boilerplate requirements with another set
of boilerplate requirements which was transformed manually,
and with the original requirements. We re-used the boilerplates
used for the manual transformation in this evaluation. The data
for the DMS ontology was initially provided by EADS and
was completed by the authors. Table I lists the number of
concepts, relations and axioms.

Table II summarizes the evaluation results. Seven of the
43 requirements consisted of two sentences, all of them were
correctly detected by the SS step. From those second sentences
we regarded four as requirements, resulting in a total of
47 boilerplate requirements. The TEC was able to correct 8
errors (inconsistent spellings like “pressurisation” vs. “pres-
surization” and misspellings like “miliseconds”). The BM step
produced 2.74 suggestions on average, with a maximum of 13
and a standard deviation of 1.82, in our opinion a reasonable
number of suggestions to select from. The AVS heuristic seems
to work well: All six occurrences of adjacent attributes were
handled correctly. RK managed to put the boilerplate matching
found to be best-fitting by us at the first position in 31 out of
39 cases (79.4%).

The 47 resulting requirements contain a total of 97 instan-
tiated boilerplates. For 19 requirements we needed modifi-
cations after the transformation; 22 extra boilerplates were
removed from the requirements and two were added. The
remaining 60% needed no further modifications.

Comparing the resulting requirements with the ones we
transformed manually, we made the following observations:

• Requirements formulated using passive voice have been
converted to active voice in the manual transformation to
fit better into the boilerplate representation. Tool support
for this is something we want to look into.

• Statements like “it shall be possible” and “there shall be
means to” have been converted to include a subject in
the manual transformation, e.g., “the DMS shall be able
to”. Such statements need further manual work after our
transformation process.

• Some of the requirements started with “subject shall be
designed such that” and then continued with the actual
requirement. In the manual transformation we simply
removed this prefix.

• In the manual transformation we dropped some redundant
expressions while doing the transformation. Our process
does not try to do that.

Compared to the original NL requirements we have
achieved the following improvements:

• We increased the requirements’ formalism. The separa-
tion into boilerplate attributes and FSEs allows using
more advanced analysis methods, e.g., categorization of
requirements by boilerplates or by attributes. Measure-
ment values and units are explicit, which allows for au-
tomatic processing of requirements, e.g. for verification.

• We increased the understandability by linking require-
ment terms to domain concepts with textual descriptions.

• We increased the internal uniformity of requirements, all
requirements now use “shall”.

• Our process managed to correct typographical errors.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a semi-automated process for
the transformation of NL requirements into semi-formal boil-
erplate requirements. Our evaluation shows that for 60% of the
requirements manual interaction is minimal. We also presented
the quality improvements that were achieved. Using boilerplate
requirements instead of NL requirements will lead to improved
embedded systems development.

In the future we will research tool support for advanced
sentence restructuring, e.g., translation of passive voice into
active voice, and whether it is possible and useful to create
new boilerplates from a set of NL requirements. The rank-
ing algorithm is experimental at this stage and needs to be
evaluated on more requirements.

REFERENCES

[1] R. Nelken and N. Francez, “Automatic Translation of Natural Language
System Specifications into Temporal Logic,” in Proc 8th Int. Conf.
Computer Aided Verification. Springer, 1996, pp. 360–371.

[2] S. Seresht and O. Ormandjieva, “Automated Assistance for Use Cases
Elicitation from User Requirements Text,” in Proc. 11th Workshop on
Requirements Engineering, vol. 16, 2008, pp. 128–139.

[3] G. Cabral and A. Sampaio, “Formal Specification Generation from
Requirement Documents,” Electronic Notes in Theoretical Computer
Science, vol. 195, pp. 171–188, 2008.

[4] R. Fernandes and A. Cowie, “Capturing Informal Requirements as
Formal Models,” in Proc. 9th Australian Workshop on Requirements
Engineering, 2004, pp. 1–8.

[5] M. Gordon and D. Harel, “Generating Executable Scenarios from
Natural Language,” Proc. 10th Int. Conf. Computational Linguistics and
Intelligent Text Processing, pp. 456–467, 2009.

[6] X. Liu, “Scenario Elicitation from Natural Language Requirements,”
in 2nd Int. Workshop on Education Technology and Computer Science,
vol. 2. IEEE, 2010, pp. 252–255.

[7] S. Konrad and B. Cheng, “Facilitating the Construction of Specification
Pattern-based Properties,” in Proc. 13th Int. Conf. on Requirements
Engineering. IEEE, 2005, pp. 329–338.

[8] E. Hull, K. Jackson, and J. Dick, Requirements Engineering. Springer,
2005.

[9] T. Stålhane, I. Omoronyia, and F. Reichenbach, “Ontology-Guided
Requirements and Safety Analysis,” in Proc. 6th Int. Conf. on Safety
of Industrial Automated Systems, 2010.

[10] J. Allen, “Natural Language Processing,” in Encyclopedia of Computer
Science, 4th ed., R. Anthony, E. Reilly, and D. Hemmendinger, Eds.
John Wiley & Sons, 2003, pp. 1218–1222.

[11] H. Cunningham et al., “GATE: A Framework and Graphical Develop-
ment Environment for Robust NLP Tools and Applications,” in Proc.
40th Anniversary Meeting Association for Computational Linguistics,
2002, pp. 168–175.

[12] S. Farfeleder et al., “Ontology-Driven Guidance for Requirements
Elicitation,” in Proc. 8th Extended Semantic Web Conf. (in press), 2011.

[13] V. Levenshtein, “Binary Codes Capable of Correcting Deletions, In-
sertions, and Reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp.
707–710, 1966.

