
1High-Level Constraints over Finite DomainsM. Anton Ertl1Andreas KrallABSTRACT Constraint logic programming languages that employ consistency techniques have been usedto solve many combinatorial search problems. In solving such problems, the built-in constraints often do notsu�ce. Unfortunately, new constraints de�ned with lookahead and forward declarations are often ine�cient.In this paper, we present an e�cient high-level constraint mechanism. High-level constraints are ordinarypredicates with an additional constraint declaration. They o�er �ne-grained control over the tradeo� betweenpruning power and execution time and achieve huge speedups over lookahead declarations.1.1 IntroductionMany real-world problems, e.g. resource allocation and scheduling, can be solved usingconsistency techniques integrated with logic programming [VH89]. This integration consistsof adding domain variables and constraints to Prolog. Domain variables are logic variables,that have an associated �nite set of values, the (�nite) domain. The domain explicitelyrepresents the values that the variable can be instantiated with. Constraints are predicatesthat remove inconsistent values from the domains of their arguments.For example, given the variables X with the domain f1; 2; : : : 6g and Y with the domainf4; 5; : : : 9g, the constraint X #> Y2 immediately reduces (prunes) the domains to f5; 6gand f4; 5g respectively. A constraint is usually activated again later, when the domain ofan argument changes. In the example above, if Y is instantiated with 5 (i.e., its domain isreduced to f5g), the constraint is woken and instantiates X with 6.For a network of constraints this behaviour results in local propagation over the domains.I.e., if the domain of a variable changes, the constraints on that variable are woken up.The constraints remove inconsistent values from the domains of their variables, waking upother constraints. This process continues until there are no more changes. To �nd solutionsto the problem represented by the constraint network, this propagation is combined witha generator, e.g., a labeling predicate that instantiates each variable to some value of itsdomain.There is one problem with this approach: the built-in constraints often do not su�ce. Theycan be combined e�ectively in conjunctions, but not in disjunctions. Of course the usualProlog approach to disjunctions can be used, i.e., creating a choicepoint. However, eachchoicepoint multiplies the work to be done, so this approach is often unacceptable. Evenfor conjunctions of constraints, there is sometimes a need for better pruning, which cannot1Institut f�ur Computersprachen, Technische Universit�at Wien, Argentinierstra�e 8, 1040 Wien, Austria;fanton,andig@mips.complang.tuwien.ac.at2In our constraint logic programming system, Aristo, #>, #>= etc. are the constraint versions of Prolog's >, >=etc. Declaratively, #> means the same as >.
Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
Manfred Meyer (ed.), Constraint Processing, Springer LNCS 923, pages 51--66
originally presented at: Constraint Processing, International Workshop at CSAM ’93, pages 65--76

2 M. Anton Ertl, Andreas Krallbe met by the local propagation mechanism alone.To alleviate this problem, Van Hentenryck introduced facilities for de�ning new constraintsin the constraint logic programming language: forward- and lookahead-declarations. Thesemechanisms work by checking the consistency for every possible combination of values fromthe domains of the variables. This method is very slow, making user-de�ned constraintsuseless in many cases, where the reduction in search space does not amortize the highercost of constraint propagation.In this paper we present a new, more e�cient and more exible method for de�ning high-level constraints. The constraint declaration is introduced in Section 1.2. Section 1.3shows that it does not change the declarative semantics and discusses related issues. Sec-tion 1.4 presents examples. The relation to forward- and lookahead-declarations is discussedin Section 1.5. Section 1.6 discusses e�ciency improvements and shows how the mechanismsof high-level constraints can be used to de�ne built-in constraints. Our implementation isdescribed in Section 1.7 and Section 1.8 presents a few empirical results.1.2 High-Level ConstraintsWe call our mechanism high-level constraints, because they are written in the constraintlogic programming language itself. In contrast, low-level constraints are written in theimplementation language of the system, e.g. C.Syntactically, high-level constraints look just like ordinary predicates (they also have thesame meaning, see Section 1.3.1), except that we have to add a constraint-declaration::- constraint C=Head trigger Goal1 satisfied Goal2.The predicate that is declared as constraint (the constraint predicate) is given by Head.Goal1 speci�es when the constraint is woken up; Goal2 speci�es when the constraint issatis�ed3. Using metalogical goals for these purposes o�ers maximum exibility. C is usedin Goal1 to reference the constraint.How does a high-level constraint work? Whenever the constraint is woken, the constraintpredicate is executed and all solutions of the predicate are collected. For each variableoccuring in the arguments of the constraint, the union of its domains over all intermediatesolutions is computed; then the domain of the variable is reduced to this union. Thisreduction of the domains is the entire e�ect of the constraint. Choicepoints and bindingsmade during the execution of the constraint have no e�ect outside. After this reduction,the satisfaction goal Goal2 is executed. If it succeeds, the constraint is satis�ed and neednot be woken up any more. If it fails, the constraint is not yet satis�ed and is just put backto sleep until it is woken up again. If the constraint goal does not have any solutions, theconstraint fails.The constraint is not executed in the usual environment: Constraints outside the high-levelconstraint (outer constraints) are not woken up in the high-level constraint. In other words,the constraint works as if outer constraints did not exist. During the collection of solutions,3A constraint is satis�ed, if it need not be woken up again.

1. High-Level Constraints over Finite Domains 3oundering4 constraints are ignored and the domains are used as they are.The mechanism is illustrated by an example: the max(X,Y,Z) constraint holds if Z is themaximum of X and Y. It can be de�ned as follows::- constraint C=max(X,Y,Z)trigger trigger_minmax(X,C), trigger_minmax(Y,C),trigger_minmax(Z,C)satisfied one_var([X,Y,Z]).max(X,Y,Z) :- X#>=Y, X=Z.max(X,Y,Z) :- X#<Y, Y=Z.When max(X,Y,Z) is woken up and the variables have the domainsX 2 f2; 3; 5g; Y 2 f0; : : : ; 4g; Z 2 f2; 4; 6; 8gmax(X,Y,Z) produces two intermediate solutions:X = Z = 2; Y 2 f0; : : : ; 2gand X 2 f2; 3g; Y = Z 2 f2; 4gThe unions are: X 2 f2; 3g; Y 2 f0; 1; 2; 4g; Z 2 f2; 4gThe e�ect of the activation of the constraint is to reduce the domains of the variables tothese unions.The satisfied goal in the example is one var(T), which succeeds if T contains at mostone variable. This is a built-in, since it is frequently used (see Section 1.3.2).Triggers work similar to Prolog II's freeze/2. They always succeed, and have the e�ectthat the constraint is woken, when the variable's domain changes in a certain way.5trigger minmax(V,C) speci�es that the constraint C is woken whenever the minimum orthe maximum of the domain of V changes. It can be constructed from built-ins:trigger_minmax(V,C) :- trigger_min(V,C), trigger_max(V,C).We have four built-ins for specifying trigger conditions, corresponding to the wakeup mech-anisms in our constraint logic programming system:trigger ground(V,C) Wake C up when V is instantiated (to an integer).trigger min(V,C) Wake C up whenever the minimum of the values in the domain changes,i.e., when the minimal value is removed from the domain.4A constraint ounders if the computation ends before the constraint is satis�ed. This can be avoided by su�-ciently instantiating the variables.5Note that a conjunction of triggers means that the constraint is woken if any of the trigger conditions is satis�ed.The trigger syntax has been criticized as inelegant, but we did not �nd a more elegant syntax that o�ers the same(or better) expressive power and does not cause a big implementation e�ort.

4 M. Anton Ertl, Andreas Kralltrigger max(V,C) Analogous to trigger min(V,C).trigger size(V,C) Wake C up whenever a value is removed from the domain.The user can combine constraint declarations with coroutining declarations (e.g. NU-Prologswhen-declarations). This can be used for delaying the �rst wakeup of the constraint untilits arguments are instantiated su�ciently for achieving substantial pruning.1.3 Properties and Restrictions1.3.1 Declarative SemanticsThe declarative semantics of a program with constraint declarations are exactly the sameas without constraint declarations, if the following condition is met: The satisfied goalmust not succeed unless all combinations of values of the domain variables are consistentwith respect to the constraint (see Section 1.3.2).High-level constraints are based on two mechanisms: triggering/activation and summarizingsolutions. The triggering mechanism just changes the order of execution, which has noinuence on the declarative semantics. A constraint may be activated several times, butonly the last time is important for the declarative semantics, since any solution that passesthat activation also passes the others.To prove the equivalence of the declarative semantics of the summarizing process, we showthat it does neither remove nor add any solutions. The summarizing process collects all so-lutions of the constraint predicate and processes them by taking the union, so the summaryobviously contains all solutions. Due to the restriction on the satisfaction condition, thesummary of a satis�ed constraint contains only combinations of values that are consistentwith respect to the constraint, i.e., it contains only solutions.If the constraint is not yet satis�ed, it ounders. We can think of a oundering constraintas quali�ed answer; it represents all consistent combinations of values of the variables.The oundering behaviour may be changed by the constraint declaration, but the answersrepresent the same solution set.1.3.2 SatisfactionThe satisfied goal must only succeed if all combinations of the values in the domainsare consistent. This is obviously the case when the constraint predicate succeeds and allarguments are ground. This condition is a bit too restrictive. A constraint is already satis-�ed, when there is at most one domain variable left [VH89] and all inconsistent values areremoved from its domain, i.e. if there are no unsatis�ed constraints within the high-levelconstraint. For some constraints it can be determined even earlier that there are no incon-sistent combinations of values. E.g., X#<Y is satis�ed when the largest value in the domainof X is smaller than the smallest value in the domain of Y.

1. High-Level Constraints over Finite Domains 5:- constraint C = element(X,L,E)trigger trigger_size(X,C), trigger_size(E,C),trigger_listground(L,C)satisfied one_var([X,E|L]).element(X,L,E):- element(X,L,E,1).:- element(_,L,_,_) when L.element(X,[E|Ls],E,X).element(X,[_|Ls],E,N):- N1 is N+1, element(X,Ls,E,N1).:- trigger_listground(L,_) when L.trigger_listground([],_).trigger_listground([V|Vs],C):- trigger_ground(V,C),trigger_listground(Vs,C).FIGURE 1.1. The element/3 constraint1.3.3 PragmaticsOf course, maintaining the declarative semantics is not very useful if the program loopsendlessly or ounders due to the change in procedural semantics. Fortunately, this is not aproblem in practice: In typical applications, every domain variable is instantiated eventually.Therefore, every constraint is satis�ed and there can be no oundering. Endless loops canusually be avoided by making liberal use of coroutining.To ensure that there is no oundering, the trigger goal must specify enough wakeupconditions. As a minimum, the constraint should be woken when one of its arguments isinstantiated (i.e., trigger ground), otherwise it could miss a decisive instantiation andremain unsatis�ed forever. Using other trigger goals causes more frequent wakeup6 andearlier pruning, inuencing performance. Which is best depends on the constraint andsometimes on the application.1.4 ExamplesThe constraint element(X,L,E) holds if E is the Xth element of the list L. It is instrumentalin solving many combinatorial search problems, e.g. the cutting stock problem of [VH89].It can be de�ned as high-level constraint by just adding a constraint declaration to adeclaratively programmed predicate (see Figure 1.1).The when-declarations are coroutining declarations that delay the execution of the predicateuntil the speci�ed arguments are instantiated.The constraint atmost(Nb,L,Val) holds if at most Nb elements of L are equal to Val.This constraint is needed in solving a car-sequencing problem [DSVH88]. We could add aconstraint declaration to the predicate described in [VHD91], but this would result in up6trigger min/2 (trigger max) must be used in conjunction with trigger ground/2 or trigger max/2(trigger min/2) to enforce triggering upon instantiation.

6 M. Anton Ertl, Andreas Krallatmost(Nb,L,Val):- occurt(N,Val,L), N#=<Nb.:- occurt(_,_,L) when L.occurt(0,_,[]).occurt(N+D,Val,[V|Vs]):-[D] in 0..1, occur1(D,V,Val), occurt(N,Val,Vs).:- constraint C = occur1(D,V1,V2)trigger trigger_ground(D,C), trigger_ground(V1,C),trigger_ground(V2,C)satisfied one_var([D,V1,V2]).occur1(1,V,V).occur1(0,V1,V2):- V1 #/= V2.FIGURE 1.2. The atmost/3 constraintto 2jLj solutions per activation of the constraint, i.e., each activation could cost exponentialtime. Our implementation is natural and e�cient (see Figure 1.2):occurt(Nb,Val,L)7 holds if exactly Nb elements of L are equal to Val. occurt/3 createsone occur1/3 constraint for each element, which checks the equality of one element withVal. occurt/3 adds up the number of equalities, and atmost(Nb,L,Val) checks with the#=</2 that they are less than or equal to Nb.As soon as Nb variables in L become equal to Val, the sum reaches Nb, and the #=</2instantiates all other variables in the sum to 0. This in turn wakes the occur1/3 constraintsup, which then remove Val from domains of the rest of the variables via #/=.1.5 Forward- and Lookahead-DeclarationsThis section describes the relation of our high-level constraint mechanism to forward- andlookahead-declarations. Basically, our high-level constraints can be seen as a generalizationof lookahead declarations.As an example, we will look at the constraint disjunctive/4. This constraint is used inscheduling applications.A constraint declared with a lookahead declaration checks the consistency of every com-bination of values from the domains by running every combination through the predicate.Of course, this method is very time-consuming. In the example, if the variables Si and Sjhave, e.g., 100 values in their domains, the constraint below would check 10 000 value com-binations. Forward declarations can be mechanically transformed into high-level constraintswith the same behaviour. E.g., the constraint7A general-purpose occur/3 can be de�ned byoccur(N,Val,L):- occurt(Nt,Val,L), N#=Nt.

1. High-Level Constraints over Finite Domains 7:- lookahead disjunctive(domain, ground, domain, ground).disjunctive(Si,Di,Sj,Dj) :- Sj #>= Si+Di.disjunctive(Si,Di,Sj,Dj) :- Si #>= Sj+Dj.is equivalent to:- disjunctive(Si,Di,Sj,Dj) when Di and Dj.:- constraint C=disjunctive(Si,Di,Sj,Dj)trigger trigger_size(Si,C), trigger_size(Sj,C)satisfied one_var([Si,Sj]).disjunctive(Si,Di,Sj,Dj) :- labeling([Si,Sj]),disjunctive1(Si,Di,Sj,Dj).disjunctive1(Si,Di,Sj,Dj) :- Sj #>= Si+Di.disjunctive1(Si,Di,Sj,Dj) :- Si #>= Sj+Dj.labeling/1 generates all combinations of values of the domain variables in its argument.Forward declarations can be transformed in the same way, only the when-declaration isdi�erent; it allows only one variable::- disjunctive(Si,Di,Sj,Dj) when Di and Dj and (Si or Sj).The high-level constraint version of the constraint is a bit slower than the lookahead dec-laration version, since the lookahead mechanism is more specialized. However, it is easy tomake the constraint more e�cient without losing pruning power: One variable can be leftuninstantiated. This reduces the search process enormously, in the disjunctive/4 exam-ple to less than 200 tries. This method works for all constraint predicates, unless they usebuilt-ins that create a run-time error when presented with a variable.Depending on the constraint, it may also be pro�table to perform labeling after statingthe subconstraints or to use domain-splitting instead of labeling, exploiting the pruningcapabilities of the subconstraints.We can do away with the labeling completely, if, for all alternatives, local propagation onthe respective constraint networks is a satisfaction-complete8 solver. This is the case for thedisjunctive/4 constraint9, so searching is reduced to 2 tries.For many constraints, it is also possible to use more restrictive triggering, resulting in fewerwakeups. E.g., in the case of disjunctive/4, trigger minmax/2 can be used without losingpruning power.All these improvements and specialization of the satisfaction goal (Section 1.3.2) lead tothe following disjunctive/4:8In the CLP framework [JL87], a constraint solver is satisfaction-complete, if it can always decide whether aconstraints network is satis�able or not. Applied to �nite domains this means that a satisfaction-complete solveralways removes all values from the domains that are not consistent with the network of constraints. Partial lookaheadconstraints, forward-checking constraints and conjunctions of constraints are usually not satisfaction-complete.9While the constraint #>=/2 is not necessarily satisfaction-complete when applied to general linear terms, it issatisfaction-complete for simple cases like V1 #>= V2+Const.

8 M. Anton Ertl, Andreas Krall:- disjunctive(Si,Di,Sj,Dj) when Di and Dj.:- constraint C=disjunctive(Si,Di,Sj,Dj)trigger trigger_minmax(Si,C), trigger_minmax(Sj,C)satisfied dommin(Si,Sil), dommax(Si,Siu),dommin(Sj,Sjl), dommax(Sj,Sju),(Siu+Di=<Sjl; Sju+Dj=<Sil).disjunctive(Si,Di,Sj,Dj) :- Sj #>= Si+Di.disjunctive(Si,Di,Sj,Dj) :- Si #>= Sj+Dj.All the above improvements have the same pruning power as lookahead-declarations. Formany applications it is also pro�table to trade pruning power for time spent in the constraintby performing less labeling or fewer activations.The implementation of our high-level constraint mechanism is quite similar to the imple-mentation of forward- and lookahead-declarations, and takes about the same e�ort.1.6 Re�nements1.6.1 Outer ConstraintsAs described in Section 1.2, constraints that were invoked outside the high-level constraintare not activated in the high-level constraint. The reason for this is not a theoretical di�-culty, but a practical consideration: Suppose that there is a network of high-level constraintsthat internally perform a lot of labeling. The labeling of one variable in the constraintwould wake up other constraints which would label other variables and so on. Eventuallythis would result in a complete labeling of the network, with the associated exponentialrun-time behaviour, but without the usual bene�t of labeling, namely, a solution.On the other hand, it would be nice to apply outer constraints during the execution of high-level constraints to achieve better pruning. The problematic behaviour arises when outerconstraints create choicepoints. The solution is to execute only constraints that cannotcreate choicepoints, i.e. low-level constraints.1.6.2 Single SolutionsIf a constraint predicate delivers only one solution (e.g., due to failure of all other alterna-tives), it no longer makes sense to apply the high-level constraint mechanism.The constraintpredicate can be executed as normal predicate. It is then satis�ed, unless it uses meta orextra-logical features. This avoids the overhead of solution collection and later wakeups.More importantly, it opens new avenues for pruning, since the subconstraints of such ahigh-level constraint are now visible outside.

1. High-Level Constraints over Finite Domains 9built-in predicate Behaviourdommin(X,MinX) Uni�es MinX with the smallest value in the domain of Xdommax(X,MaxX) Uni�es MaxX with the largest value in the domain of Xdomlist(X,L) Uni�es L with the list of values in the domain of Xnot_equal_const(X,Y) Y must be an integer; remove Y from the domain of Xgreater_equal_const(X,Y) Y must be an integer; remove values <Y from the domain of Xless_equal_const(X,Y) Y must be an integer; remove values >Y from the domain of XTABLE 1.1. These built-in predicates can be used to build any constraint1.6.3 Built-in ConstraintsOur mechanism for de�ning high-level constraints can also be used by the language imple-mentor for de�ning built-in constraints. E.g., #=</210 can be de�ned by::- builtin_constraint C = X#=<Ytrigger trigger_min(X,C), trigger_ground(X,C),trigger_max(Y,C), trigger_ground(Y,C),satisfied dommax(X,MaxX), dommin(Y,MinY), MaxX=<MinY.X #=< Y :- dommin(X, MinX), greater_equal_const(Y, MinX),dommax(Y, MaxY), less_equal_const(X, MaxY).dommin/2 and dommax/2 are metalogical predicates for getting the minimum/maximumvalue in the domain of the variable. Integers are treated as domain variables with one valuein the domain. greater equal const/2 and less equal const/2 are built-in predicates(i.e., not constraints) for updating the minimum/maximum of the variable's domain. A fewsuch predicates (see Table 1.1) make it possible to de�ne all constraints with the high-levelconstraint mechanism.For such constraints the important feature of high-level constraints is the wakeup mech-anism. Most of them have only one solution, so the solution collection mechanism is notnecessary and would constitute unnecessary overhead. The constraint predicate can simplybe executed. Note that, since the constraint predicate uses metalogical goals, the constraintis not satis�ed after executing the predicate once, even though it has only one solution. In-stead, it is satis�ed only when the satisfied goal becomes true. Declaring the constraintas builtin constraint (instead of constraint) indicates that this di�erent treatmentshould be applied.The bene�ts of using high-level constraints for de�ning built-ins are lower developmentcosts. E.g., the low-level version of #=</2 constraint de�ned above takes 45 lines of C codein the Aristo system. In addition, if all low-level constraints are eliminated, the mechanismfor handling them becomes unnecessary. The cost is of course lower performance. However,by using optimizing compiler technology [Tay90, KB92] this cost can be eliminated.10This version cannot work with linear terms, only with plain variables. The general version requires more code.

10 M. Anton Ertl, Andreas KrallSolutions low-level forward high-level lookahead high-level choiceone 3.53ms 4.90ms 3.93ms 18.24ms 14.65ms 10.80msall 5.92ms 9.75ms 7.19ms 47.00ms 38.90ms 16.49msTABLE 1.2. Five houses timings1.7 ImplementationWhen a high-level constraint is called, the system creates a frozen constraint, a data struc-ture similar to a suspension [Car87] that contains the constraint goal and the satisfiedgoal. Then the trigger goal is called; the variable C, used as the second argument to thetrigger built-ins, contains the frozen constraint. A trigger built-in inserts the frozen con-straint into the list of constraints that are woken up when the speci�ed attribute of thevariable changes. E.g., trigger_min(V,C) inserts the frozen constraint C into the min-listof V.What happens when the constraint is woken up depends on its type. For a constraintdeclared with constraint, room su�cient for the domains of the variables in the argumentsof the constraint is reserved. In this space the resulting domains are constructed. Theyare initialized to empty. Then a procedure similar to findall/3 is performed: If there isno solution, the constraint fails and backtracking is performed. If there is a solution, thevalues in the domains of the variables in the arguments are added to the appropriate resultdomains. Then backtracking is initiated. If there is another solution, then the process isrepeated. Finally, the constraint goal will fail. If there was only one solution, the constraintis marked as satis�ed and the constraint goal is meta-called (Section 1.6.2). Otherwise, thevariables in the arguments of the constraint are reduced to the result domains; and thesatisfied goal is called. If it succeeds, the constraint is marked as satis�ed, otherwise asfrozen (i.e., it might be woken up again).The processing of a builtin_constraint is much simpler: The constraint goal is simplymeta-called. Then the satisfied goal is called and processed as described above.The restriction of not executing outer high-level constraints is implemented as follows:The system counts the depth of constraint processing; every frozen constraint has a �eldcontaining the depth where the constraint was called. A high-level constaint is only wokenup, if the current level is the same as the level at the call of the constraint.This implementation adds a few restrictions: The trigger and satisfied goals must nothave any declarative meaning, i.e., they must not bind arguments of the constraint or addany constraints; they also must not create (permanent) choicepoints. The trigger goalmust always succeed. These restrictions can be enforced at run-time by checking the lastchoicepoint and the entries on the trail.1.8 ResultsWe implemented the high-level constraint mechanism described here. The times were mea-sured using the Aristo system, a WAM-emulator based constraint logic programming sys-tem.

1. High-Level Constraints over Finite Domains 11?- [A,B,C] in 1..N, max(A,B,C).domain size N hlc lookahead20 0.87ms 2360ms50 1.12ms 36500ms100 1.55ms 292000msTABLE 1.3. max/3 timings (one activation)We compared four approaches: using a low-level constraint, our high-level constraint mech-anism, forward checking, and using disjunctions as choices. We used the �ve houses puzzle[VH89] as benchmark. The solution involves a constraint plusorminus/3, which we imple-mented with all approaches. We have measured two high-level constraint versions: one withthe same pruning power as forward checking, one with the same pruning power as looka-head. The times for �nding the solution on a DecStation 5000/150 (50/100Mhz R4000,46 SPECInt) are shown in Table 1.2. The all times include the time for proving that thepuzzle has only one solution.We also compared the performance of one activation of the max/3 of Section 1.2 with afull labeling (lookahead style) version of max/3 (see Table 1.3, timings performed on aDecStation 5000/125 (25MHz R3000, 16 SPECInt)). Both versions have the same pruningpower. As expected, the lookahead version becomes slower with the cube of the domain size.The high-level constraint version is between 2700 and 188000 times faster. Domain sizes inthis range are not unusual for max/3. The signi�cance of this example is not the enormousspeedups; instead, it shows that lookahead declarations are often too slow in practice, whilehigh-level constraints are usable.1.9 Related WorkSection 1.5 compares our high-level constraints to forward- and lookahead-declarations[VH89].The cardinality operator [VHD91] can express disjunction and negation of constraints. It isbased on constraint entailment (implication). In principle it can be applied to any domain(e.g. rationals). In contrast, our mechanism is restricted to �nite domains, but it achievesbetter pruning. E.g., a cardinality operator version of max/3 achieves no pruning for theexample in Section 1.2, since it cannot show negative entailment of one of the two branchesof max/3. The atmost/3 example gives an idea how the cardinality operator can be emulatedwith high-level constraints.Constraint simpli�cation rules [Fr�u92] replace or augment (combinations of) constraintswith simpler constraints. They can simplify delayed user-de�ned predicates like max/3, butthey achieve no pruning for the example in Section 1.2. Simpli�cation rules are practicalfor stating more global relations and are complementary to high-level constraints.Echidna [SH92] allows disjunctions of inequalities over real domains. The method employedfor disjunctions can be seen as a specialization of our method for summarizing alternativeintermediate solutions.

12 M. Anton Ertl, Andreas KrallGeneralised propagation [LPW92] extends the propagation mechanism from �nite domainsto arbitrary domains. A propagation step for a goal results in an approximation of thesolution set that is as close as can be represented in the domain. [LPW92] does not say muchabout how to compute these approximations and when to perform propagation steps (whento wake up constraints). For �nite domains, lookahead declarations are a specialization ofgeneralized propagation. High-level constraints are a bit more general, as they can alsoexpress partial lookahead, i.e., an approximation that is not as close as possible.[VHSD91] presents many ideas, among them constructive disjunction of constraints, whichis further explored in [JS93]. As described in the latter paper, constructive disjunctionis a combination of our summarizing process (called global lookahead reduction in [JS93])with a specialization of the cardinality operator. All of these cardinality operator featuresare covered by our single solution re�nement (see Section 1.6.2), except positive reductionwhich causes just early satisfaction of the constraint, but does not add to the pruningpower. Surprisingly for papers that closely related, the discussion in [JS93] is quite disjointwith that in the present paper. E.g., there is no discussion of wakeup conditions.The Nicolog system [Sid93] uses a functional intermediate representation (the projectionlanguage) for constraint networks. Among other things, new constraints can be de�nedin this language. However, this language manipulates domains explicitly and is thereforelower-level than the logic programming approach used for high-level constraints de�ned withconstraint declarations. On the other hand, it is higher-level than building constraintswith builtin_constraint and the built-in predicates for manipulating domains.[VHSD91] presents a powerful built-in constraint, similar to Nicologs projection language,which is described in more detail in [DC93]. The same comments apply as for Nicolog.There is an even lower level than builtin_constraint, which relies on domain vari-ables and a constraint wakeup mechanism: [CFS93] implements a �nite domain constraintsolver with coroutining and backtrackable assignment.Metastructures [Neu90] support user-enhanced uni�cation for building constraint solvers [Hol90] or coroutining.Coroutining delays the execution of goals until they are su�ciently instantiated [CMG82,Nai86]. Like constraint declarations, coroutining declarations do not change the declarativemeaning of a program. The implementation of high-level constraints is closely related tothe implementation of coroutining. However, they are di�erent mechanisms for di�erentpurposes.1.10 Further Work[LPW92] inspires the idea that a high-level constraint might not only reduce the domains,but might also add constraints that are satis�ed (entailed) for all intermediate solutions.Since checking the entailment of every possible constraint is too much overhead, only afew constraints that are likely to be entailed should be checked. These constraints could bespeci�ed by the programmer or determined in a training run.Specifying trigger and satisfaction conditions is too much work and error-prone. It maybe possible to generate good conditions automatically, leaving only �ne-tuning to the pro-grammer.

1. High-Level Constraints over Finite Domains 13Another interesting topic is negative high-level constraints. Currently, we can use De-Morgan's Law to push the negation down and then use negative versions of the built-inconstraints. Apart from automating this transformation, there's also the negative forwardchecking inference rule [VH89].1.11 ConclusionWe have presented a mechanism for de�ning high-level constraints over �nite domains. It isachieved by mechanisms for waking constraints and for collecting and summarizing the so-lutions of a constraint predicate. Syntactically, high-level constraints are normal predicateswith an additional constraint declaration.High-level constraints allow a very �ne-grained control over the choice between pruningpower and execution time cost. The declarative meaning of the program is the same withand without constraint declarations. Our mechanism subsumes the domain- and forward-declaration mechanism of [VH89] and is as easy to implement. As free bonus, the builtinconstraints can be de�ned with this mechanism.Acknowledgements: We are grateful to Franz Puntigam, Ulrich Neumerkel, Gregory Side-bottom, Konrad Schwarz, Thomas Graf, Bruno De Backer and Hendrick Lock for comment-ing on earlier versions of this paper, and to DMS Decision Management Systems GmbH formaking Aristo available to us.1.12 References[Car87] Mats Carlsson. Freeze, indexing and other implementation issues in the WAM.In Fourth International Conference on Logic Programming (ICLP-4), pages 40{58. MIT Press, 1987.[CFS93] Phillippe Codognet, Fran�cois Fages, and Thierry Sola. A metalevel compiler ofCLP(FD) and its combination with intelligent backtracking. In Fr�ed�eric Ben-hamou and Alain Colmerauer, editors, Constraint Logic Programming: SelectedResearch, pages 437{456. MIT Press, 1993.[CMG82] K. L. Clark, F. G. McCabe, and S. Gregory. IC-Prolog language features. InK. L. Clark and S.-A. T�arnlund, editors, Logic Programming, pages 253{266.Academic Press, London, 1982.[DC93] Daniel Diaz and Phillippe Codognet. A minimal extension of the WAM forclp(fd). In International Conference on Logic Programming (ICLP), pages774{790, 1993.[DSVH88] M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving the Car SequencingProblem in Constraint Logic Programming. In European Conference on Arti�-cial Intelligence (ECAI-88), M�unchen, 1988.

14 M. Anton Ertl, Andreas Krall[Fr�u92] Thom Fr�uhwirth. Constraint simpli�cation rules. Technical Report ECRC-92-18?, ECRC, 1992.[Hol90] Christian Holzbaur. Implementation of Constraint Based Inference Mechanismsthrough Extended Uni�cation. PhD thesis, Technische Universit�at Wien, 1990.[JL87] Joxan Ja�ar and Jean-Louis Lassez. Constraint logic programming. InFourteenth Annual ACM Symposium on Principles of Programming Languages(POPL), pages 111{119, M�unchen, 1987.[JS93] Jean Jourdan and Thierry Sola. The versatility of handling disjunctions asconstraints. In Programming Language Implementation and Logic Programming(PLILP), pages 60{74, 1993.[KB92] Andreas Krall and Thomas Berger. Fast Prolog with a VAM1p based Prologcompiler. In Programming Language Implementation and Logic Programming(PLILP '92), pages 245{259. Springer LNCS 631, 1992.[LPW92] Thierry Le Provost and Mark Wallace. Domain independent propagation. InProceedings of the International Conference on Fifth Generation Computer Sys-tems, pages 1004{1011, ICOT, Japan, 1992. Association for Computing Machin-ery.[Nai86] Lee Naish. Negation and Control in Prolog. Springer LNCS 238, 1986.[Neu90] Ulrich Neumerkel. Extensible uni�cation by metastructures. In Meta-90, Leu-ven, 1990.[SH92] Gregory Sidebottom and William S. Havens. Hierarchical arc consistency fordisjoint real intervals in constraint logic programming. Computational Intelli-gence, 8(4):601{623, 1992.[Sid93] Greg Sidebottom. Compiling constraint logic programming using interval com-putations and branching constructs. Technical report, Simon Fraser University,1993.[Tay90] Andrew Taylor. LIPS on a MIPS. In Seventh International Conference on LogicProgramming (ICLP-7), pages 174{185. MIT Press, 1990.[VH89] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. LogicProgramming Series. MIT Press, Cambridge, Massachusetts, 1989.[VHD91] Pascal Van Hentenryck and Yves Deville. The cardinality operator: A newlogical connective for constraint logic programming. In Eighth InternationalConference on Logic Programming (ICLP-8), pages 745{759. MIT Press, 1991.[VHSD91] Pascal Van Hentenryck,Vijay Saraswat, and Yves Deville. Constraint processingin cc(FD). Ftp from parcftp.xerox.com, �le pub/ccp/ccfd/pldi-5.ps, 1991.

