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High-Level Constraints over Finite Domains

M. Anton Ertl!
Andreas Krall

ABSTRACT Constraint logic programming languages that employ consistency techniques have been used
to solve many combinatorial search problems. In solving such problems, the built-in constraints often do not
suffice. Unfortunately, new constraints defined with lookahead and forward declarations are often inefficient.
In this paper, we present an efficient high-level constraint mechanism. High-level constraints are ordinary
predicates with an additional constraint declaration. They offer fine-grained control over the tradeoff between
pruning power and execution time and achieve huge speedups over lookahead declarations.

1.1 Introduction

Many real-world problems, e.g. resource allocation and scheduling, can be solved using
consistency techniques integrated with logic programming [VH89]. This integration consists
of adding domain variables and constraints to Prolog. Domain variables are logic variables,
that have an associated finite set of values, the (finite) domain. The domain explicitely
represents the values that the variable can be instantiated with. Constraints are predicates
that remove inconsistent values from the domains of their arguments.

For example, given the variables X with the domain {1,2,...6} and Y with the domain
{4,5,...9}, the constraint X #> Y? immediately reduces (prunes) the domains to {5,6}
and {4,5} respectively. A constraint is usually activated again later, when the domain of
an argument changes. In the example above, if Y is instantiated with 5 (i.e., its domain is
reduced to {5}), the constraint is woken and instantiates X with 6.

For a network of constraints this behaviour results in local propagation over the domains.
Le., if the domain of a variable changes, the constraints on that variable are woken up.
The constraints remove inconsistent values from the domains of their variables, waking up
other constraints. This process continues until there are no more changes. To find solutions
to the problem represented by the constraint network, this propagation is combined with
a generator, e.g., a labeling predicate that instantiates each variable to some value of its
domain.

There is one problem with this approach: the built-in constraints often do not suffice. They
can be combined effectively in conjunctions, but not in disjunctions. Of course the usual
Prolog approach to disjunctions can be used, i.e., creating a choicepoint. However, each
choicepoint multiplies the work to be done, so this approach is often unacceptable. Even
for conjunctions of constraints, there is sometimes a need for better pruning, which cannot
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be met by the local propagation mechanism alone.

To alleviate this problem, Van Hentenryck introduced facilities for defining new constraints
in the constraint logic programming language: forward- and lookahead-declarations. These
mechanisms work by checking the consistency for every possible combination of values from
the domains of the variables. This method is very slow, making user-defined constraints
useless in many cases, where the reduction in search space does not amortize the higher
cost of constraint propagation.

In this paper we present a new, more efficient and more flexible method for defining high-
level constraints. The constraint declaration is introduced in Section 1.2. Section 1.3
shows that it does not change the declarative semantics and discusses related issues. Sec-
tion 1.4 presents examples. The relation to forward- and lookahead-declarations is discussed
in Section 1.5. Section 1.6 discusses efficiency improvements and shows how the mechanisms
of high-level constraints can be used to define built-in constraints. Our implementation is
described in Section 1.7 and Section 1.8 presents a few empirical results.

1.2 High-Level Constraints

We call our mechanism high-level constraints, because they are written in the constraint
logic programming language itself. In contrast, low-level constraints are written in the
implementation language of the system, e.g. C.

Syntactically, high-level constraints look just like ordinary predicates (they also have the
same meaning, see Section 1.3.1), except that we have to add a constraint-declaration:

:- constraint (=Head trigger Goal; satisfied Goal;.

The predicate that is declared as constraint (the constraint predicate) is given by Head.
Goaly specifies when the constraint is woken up; Goaly specifies when the constraint is
satisfied®. Using metalogical goals for these purposes offers maximum flexibility. C'is used
in Goal; to reference the constraint.

How does a high-level constraint work? Whenever the constraint is woken, the constraint
predicate is executed and all solutions of the predicate are collected. For each variable
occuring in the arguments of the constraint, the union of its domains over all intermediate
solutions is computed; then the domain of the variable is reduced to this union. This
reduction of the domains is the entire effect of the constraint. Choicepoints and bindings
made during the execution of the constraint have no effect outside. After this reduction,
the satisfaction goal Goaly is executed. If it succeeds, the constraint is satisfied and need
not be woken up any more. If it fails, the constraint is not yet satisfied and is just put back
to sleep until it is woken up again. If the constraint goal does not have any solutions, the
constraint fails.

The constraint is not executed in the usual environment: Constraints outside the high-level
constraint (outer constraints) are not woken up in the high-level constraint. In other words,
the constraint works as if outer constraints did not exist. During the collection of solutions,

7 A constraint is satisfied, if it need not be woken up again.
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floundering* constraints are ignored and the domains are used as they are.

The mechanism is illustrated by an example: the max(X,Y,Z) constraint holds if Z is the
maximum of X and Y. It can be defined as follows:

:- constraint C=max(X,Y,Z)
trigger trigger_minmax(X,C), trigger_minmax(Y,C),
trigger_minmax(Z,C)
satisfied one_var([X,Y,Z]).
max (X,Y,Z) :- X#>=Y, X=Z.
max (X,Y,Z) :- X#<Y, Y=Z.

When max (X,Y,Z) is woken up and the variables have the domains
X€{27375}7 Y€{07"'74}7 26{2747678}

max (X,Y,Z) produces two intermediate solutions:

Xx=z2=2, vYe{0,...,2}
and

Xe{2,3}, Yy=2Z¢€ {24}
The unions are:

Xe {23}, Ye{0,1,2,4), zZ¢€ {24}

The effect of the activation of the constraint is to reduce the domains of the variables to
these unions.

The satisfied goal in the example is one var(T), which succeeds if T contains at most
one variable. This is a built-in, since it is frequently used (see Section 1.3.2).

Triggers work similar to Prolog II’s freeze/2. They always succeed, and have the effect
that the constraint is woken, when the variable’s domain changes in a certain way.?

trigger minmax (V,C) specifies that the constraint C is woken whenever the minimum or
the maximum of the domain of V changes. It can be constructed from built-ins:

trigger_minmax(V,C) :- trigger_min(V,C), trigger_max(V,C).

We have four built-ins for specifying trigger conditions, corresponding to the wakeup mech-
anisms in our constraint logic programming system:

trigger ground(V,C) Wake C up when V is instantiated (to an integer).

trigger min(V,C) Wake C up whenever the minimum of the values in the domain changes,
i.e., when the minimal value is removed from the domain.

*A constraint flounders if the computation ends before the constraint is satisfied. This can be avoided by suffi-
ciently instantiating the variables.

®Note that a conjunction of triggers means that the constraint is woken if any of the trigger conditions is satisfied.
The trigger syntax has been criticized as inelegant, but we did not find a more elegant syntax that offers the same
(or better) expressive power and does not cause a big implementation effort.
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trigger max(V,C) Analogous to trigger min(V,C).

trigger size(V,C) Wake C up whenever a value is removed from the domain.

The user can combine constraint declarations with coroutining declarations (e.g. NU-Prologs
when-declarations). This can be used for delaying the first wakeup of the constraint until
its arguments are instantiated sufficiently for achieving substantial pruning.

1.3 Properties and Restrictions

1.3.1 DECLARATIVE SEMANTICS

The declarative semantics of a program with constraint declarations are exactly the same
as without constraint declarations, if the following condition is met: The satisfied goal
must not succeed unless all combinations of values of the domain variables are consistent
with respect to the constraint (see Section 1.3.2).

High-level constraints are based on two mechanisms: triggering/activation and summarizing
solutions. The triggering mechanism just changes the order of execution, which has no
influence on the declarative semantics. A constraint may be activated several times, but
only the last time is important for the declarative semantics, since any solution that passes
that activation also passes the others.

To prove the equivalence of the declarative semantics of the summarizing process, we show
that it does neither remove nor add any solutions. The summarizing process collects all so-
lutions of the constraint predicate and processes them by taking the union, so the summary
obviously contains all solutions. Due to the restriction on the satisfaction condition, the
summary of a satisfied constraint contains only combinations of values that are consistent
with respect to the constraint, i.e., it contains only solutions.

If the constraint is not yet satisfied, it flounders. We can think of a floundering constraint
as qualified answer; it represents all consistent combinations of values of the variables.
The floundering behaviour may be changed by the constraint declaration, but the answers
represent the same solution set.

1.3.2 SATISFACTION

The satisfied goal must only succeed if all combinations of the values in the domains
are consistent. This is obviously the case when the constraint predicate succeeds and all
arguments are ground. This condition is a bit too restrictive. A constraint is already satis-
fied, when there is at most one domain variable left [VH89] and all inconsistent values are
removed from its domain, i.e. if there are no unsatisfied constraints within the high-level
constraint. For some constraints it can be determined even earlier that there are no incon-
sistent combinations of values. E.g., X#<Y is satisfied when the largest value in the domain
of X is smaller than the smallest value in the domain of Y.
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:- constraint C = element(X,L,E)
trigger trigger_size(X,C), trigger_size(E,C),
trigger_listground(L,C)
satisfied one_var([X,E|L]).
element (X,L,E):- element(X,L,E,1).

:- element(_,L,_,_) when L.
element (X, [E|Ls],E,X).
element(X,[_ILs],E,N):- N1 is N+1, element(X,Ls,E,N1).

:- trigger_listground(L,_) when L.

trigger_listground([],_).

trigger_listground([V|Vs],C):- trigger_ground(V,C),
trigger_listground(Vs,C).

FIGURE 1.1. The element/3 constraint

1.3.3 PRAGMATICS

Of course, maintaining the declarative semantics is not very useful if the program loops
endlessly or flounders due to the change in procedural semantics. Fortunately, this is not a
problem in practice: In typical applications, every domain variable is instantiated eventually.
Therefore, every constraint is satisfied and there can be no floundering. Endless loops can
usually be avoided by making liberal use of coroutining.

To ensure that there is no floundering, the trigger goal must specify enough wakeup
conditions. As a minimum, the constraint should be woken when one of its arguments is
instantiated (i.e., trigger ground), otherwise it could miss a decisive instantiation and
remain unsatisfied forever. Using other trigger goals causes more frequent wakeup® and
earlier pruning, influencing performance. Which is best depends on the constraint and
sometimes on the application.

1.4  Examples

The constraint element (X,L,E) holds if E is the X** element of the list L. It is instrumental
in solving many combinatorial search problems, e.g. the cutting stock problem of [VH89].
It can be defined as high-level constraint by just adding a constraint declaration to a
declaratively programmed predicate (see Figure 1.1).

The when-declarations are coroutining declarations that delay the execution of the predicate
until the specified arguments are instantiated.

The constraint atmost (Nb,L,Val) holds if at most Nb elements of L are equal to Val.
This constraint is needed in solving a car-sequencing problem [DSVHS88]. We could add a
constraint declaration to the predicate described in [VHD91], but this would result in up

®trigger min/2 (trigger max) must be used in conjunction with trigger ground/2 or trigger max/2
(triggermin/2) to enforce triggering upon instantiation.
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atmost (Nb,L,Val):- occurt(N,Val,L), N#=<Nb.

:- occurt(_,_,L) when L.
occurt(0,_,[1).
occurt (N+D,Val, [V|Vs]) :-
[D] in 0..1, occurl(D,V,Val), occurt(N,Val,Vs).

:- constraint C = occur1(D,V1,V2)
trigger trigger_ground(D,C), trigger_ground(V1,C),
trigger_ground(V2,C)
satisfied one_var([D,V1,V2]).
occurl(1,v,V).
occurl1(0,V1,V2):- V1 #/= V2.

FIGURE 1.2. The atmost/3 constraint

to 21X solutions per activation of the constraint, i.e., each activation could cost exponential
time. Our implementation is natural and efficient (see Figure 1.2):

occurt (Nb,Val,L)” holds if exactly Nb elements of L are equal to Val. occurt/3 creates
one occuri/3 constraint for each element, which checks the equality of one element with
Val. occurt/3 adds up the number of equalities, and atmost (Nb,L,Val) checks with the
#=</2 that they are less than or equal to Nb.

As soon as Nb variables in L become equal to Val, the sum reaches Nb, and the #=</2
instantiates all other variables in the sum to 0. This in turn wakes the occuri1/3 constraints
up, which then remove Val from domains of the rest of the variables via #/=.

1.5 Forward- and Lookahead-Declarations

This section describes the relation of our high-level constraint mechanism to forward- and
lookahead-declarations. Basically, our high-level constraints can be seen as a generalization
of lookahead declarations.

As an example, we will look at the constraint disjunctive/4. This constraint is used in
scheduling applications.

A constraint declared with a lookahead declaration checks the consistency of every com-
bination of values from the domains by running every combination through the predicate.
Of course, this method is very time-consuming. In the example, if the variables Si and Sj
have, e.g., 100 values in their domains, the constraint below would check 10000 value com-
binations. Forward declarations can be mechanically transformed into high-level constraints
with the same behaviour. E.g., the constraint

TA general-purpose occur/3 can be defined by
occur(N,Val,L):- occurt(Nt,Val,L), N#=Nt.



1. High-Level Constraints over Finite Domains 7

:- lookahead disjunctive(domain, ground, domain, ground) .
disjunctive(Si,Di,Sj,Dj) :- Sj #>= Si+Di.
disjunctive(Si,Di,Sj,Dj) :- Si #>= Sj+Dj.

is equivalent to

:- disjunctive(Si,Di,Sj,Dj) when Di and Dj.
:- constraint C=disjunctive(Si,Di,Sj,Dj)
trigger trigger_size(Si,C), trigger_size(Sj,C)
satisfied one_var([Si,Sj]).
disjunctive(Si,Di,Sj,Dj) :- labeling([Si,Sjl),
disjunctive1(Si,Di,Sj,Dj).

disjunctive1(Si,Di,Sj,Dj) :- Sj #>= Si+Di.
disjunctive1(Si,Di,Sj,Dj) :- Si #>= Sj+Dj.

labeling/1 generates all combinations of values of the domain variables in its argument.

Forward declarations can be transformed in the same way, only the when-declaration is
different; it allows only one variable:

:- disjunctive(Si,Di,Sj,Dj) when Di and Dj and (Si or Sj).

The high-level constraint version of the constraint is a bit slower than the lookahead dec-
laration version, since the lookahead mechanism is more specialized. However, it is easy to
make the constraint more efficient without losing pruning power: One variable can be left
uninstantiated. This reduces the search process enormously, in the disjunctive/4 exam-
ple to less than 200 tries. This method works for all constraint predicates, unless they use
built-ins that create a run-time error when presented with a variable.

Depending on the constraint, it may also be profitable to perform labeling after stating
the subconstraints or to use domain-splitting instead of labeling, exploiting the pruning
capabilities of the subconstraints.

We can do away with the labeling completely, if, for all alternatives, local propagation on
the respective constraint networks is a satisfaction-complete® solver. This is the case for the
disjunctive/4 constraint?, so searching is reduced to 2 tries.

For many constraints, it is also possible to use more restrictive triggering, resulting in fewer
wakeups. E.g., in the case of disjunctive/4, trigger minmax/2 can be used without losing
pruning power.

All these improvements and specialization of the satisfaction goal (Section 1.3.2) lead to
the following disjunctive/4:

8In the CLP framework [JL87], a constraint solver is satisfaction-complete, if it can always decide whether a
constraints network is satisfiable or not. Applied to finite domains this means that a satisfaction-complete solver
always removes all values from the domains that are not consistent with the network of constraints. Partial lookahead
constraints, forward-checking constraints and conjunctions of constraints are usually not satisfaction-complete.

®While the constraint #>=/2 is not necessarily satisfaction-complete when applied to general linear terms, it is
satisfaction-complete for simple cases like V1 #>= V2+Const.
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:- disjunctive(Si,Di,Sj,Dj) when Di and Dj.
:- constraint C=disjunctive(Si,Di,Sj,Dj)
trigger trigger_minmax(Si,C), trigger_minmax(Sj,C)
satisfied dommin(Si,Sil), dommax(Si,Siu),
dommin(Sj,Sjl), dommax(Sj,Sju),
(Siu+Di=<Sjl; Sju+Dj=<Sil).
disjunctive(Si,Di,Sj,Dj) :- Sj #>= Si+Di.
disjunctive(Si,Di,Sj,Dj) :- Si #>= Sj+Dj.

All the above improvements have the same pruning power as lookahead-declarations. For
many applications it is also profitable to trade pruning power for time spent in the constraint
by performing less labeling or fewer activations.

The implementation of our high-level constraint mechanism is quite similar to the imple-
mentation of forward- and lookahead-declarations, and takes about the same effort.

1.6 Refinements

1.6.1 OUTER CONSTRAINTS

As described in Section 1.2, constraints that were invoked outside the high-level constraint
are not activated in the high-level constraint. The reason for this is not a theoretical diffi-
culty, but a practical consideration: Suppose that there is a network of high-level constraints
that internally perform a lot of labeling. The labeling of one variable in the constraint
would wake up other constraints which would label other variables and so on. Eventually
this would result in a complete labeling of the network, with the associated exponential
run-time behaviour, but without the usual benefit of labeling, namely, a solution.

On the other hand, it would be nice to apply outer constraints during the execution of high-
level constraints to achieve better pruning. The problematic behaviour arises when outer
constraints create choicepoints. The solution is to execute only constraints that cannot
create choicepoints, i.e. low-level constraints.

1.6.2 SINGLE SOLUTIONS

If a constraint predicate delivers only one solution (e.g., due to failure of all other alterna-
tives), it no longer makes sense to apply the high-level constraint mechanism. The constraint
predicate can be executed as normal predicate. It is then satisfied, unless it uses meta or
extra-logical features. This avoids the overhead of solution collection and later wakeups.
More importantly, it opens new avenues for pruning, since the subconstraints of such a
high-level constraint are now visible outside.
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built-in predicate Behaviour

dommin(X,MinX) Unifies MinX with the smallest value in the domain of X
dommax (X ,MaxX) Unifies MaxX with the largest value in the domain of X
domlist (X,L) Unifies L with the list of values in the domain of X
not_equal_const(X,Y) Y must be an integer; remove Y from the domain of X
greater_equal_const(X,Y) Y must be an integer; remove values <Y from the domain of X
less_equal_const(X,Y) Y must be an integer; remove values >Y from the domain of X

TABLE 1.1. These built-in predicates can be used to build any constraint

1.6.3 BuiLT-IN CONSTRAINTS

Our mechanism for defining high-level constraints can also be used by the language imple-
mentor for defining built-in constraints. E.g., #=</2'° can be defined by:

:— builtin_constraint C = X#=<Y
trigger trigger_min(X,C), trigger_ground(X,C),
trigger_max(Y,C), trigger_ground(Y,C),
satisfied dommax(X,MaxX), dommin(Y,MinY), MaxX=<MinY.
X #=< Y :- dommin(X, MinX), greater_equal_const(Y, MinX),
dommax (Y, MaxY), less_equal_const(X, MaxV).

dommin/2 and dommax/2 are metalogical predicates for getting the minimum/maximum
value in the domain of the variable. Integers are treated as domain variables with one value
in the domain. greater_equal_const/2 and less_equal_const/2 are built-in predicates
(i.e., not constraints) for updating the minimum/maximum of the variable’s domain. A few
such predicates (see Table 1.1) make it possible to define all constraints with the high-level
constraint mechanism.

For such constraints the important feature of high-level constraints is the wakeup mech-
anism. Most of them have only one solution, so the solution collection mechanism is not
necessary and would constitute unnecessary overhead. The constraint predicate can simply
be executed. Note that, since the constraint predicate uses metalogical goals, the constraint
is not satisfied after executing the predicate once, even though it has only one solution. In-
stead, it is satisfied only when the satisfied goal becomes true. Declaring the constraint
as builtin_constraint (instead of constraint) indicates that this different treatment
should be applied.

The benefits of using high-level constraints for defining built-ins are lower development
costs. E.g.. the low-level version of #=</2 constraint defined above takes 45 lines of C code
in the Aristo system. In addition, if all low-level constraints are eliminated, the mechanism
for handling them becomes unnecessary. The cost is of course lower performance. However,
by using optimizing compiler technology [Tay90, KB92] this cost can be eliminated.

19T his version cannot work with linear terms, only with plain variables. The general version requires more code.
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Solutions | low-level | forward high-level | lookahead high-level | choice
one 3.53ms | 4.90ms 3.93ms 18.24ms 14.65ms | 10.80ms
all 5.92ms | 9.75ms 7.19ms 47.00ms  38.90ms | 16.49ms

TABLE 1.2. Five houses timings

1.7 Implementation

When a high-level constraint is called, the system creates a frozen constraint, a data struc-
ture similar to a suspension [Car87] that contains the constraint goal and the satisfied
goal. Then the trigger goal is called; the variable C, used as the second argument to the
trigger built-ins, contains the frozen constraint. A trigger built-in inserts the frozen con-
straint into the list of constraints that are woken up when the specified attribute of the
variable changes. F.g., trigger_min(V,C) inserts the frozen constraint C into the min-list
of V.

What happens when the constraint is woken up depends on its type. For a constraint
declared with constraint, room sufficient for the domains of the variables in the arguments
of the constraint is reserved. In this space the resulting domains are constructed. They
are initialized to empty. Then a procedure similar to findall/3 is performed: If there is
no solution, the constraint fails and backtracking is performed. If there is a solution, the
values in the domains of the variables in the arguments are added to the appropriate result
domains. Then backtracking is initiated. If there is another solution, then the process is
repeated. Finally, the constraint goal will fail. If there was only one solution, the constraint
is marked as satisfied and the constraint goal is meta-called (Section 1.6.2). Otherwise, the
variables in the arguments of the constraint are reduced to the result domains; and the
satisfied goal is called. If it succeeds, the constraint is marked as satisfied, otherwise as
frozen (i.e., it might be woken up again).

The processing of a builtin_constraint is much simpler: The constraint goal is simply
meta-called. Then the satisfied goal is called and processed as described above.

The restriction of not executing outer high-level constraints is implemented as follows:
The system counts the depth of constraint processing; every frozen constraint has a field
containing the depth where the constraint was called. A high-level constaint is only woken
up, if the current level is the same as the level at the call of the constraint.

This implementation adds a few restrictions: The trigger and satisfied goals must not
have any declarative meaning, i.e., they must not bind arguments of the constraint or add
any constraints; they also must not create (permanent) choicepoints. The trigger goal
must always succeed. These restrictions can be enforced at run-time by checking the last
choicepoint and the entries on the trail.

1.8 Results

We implemented the high-level constraint mechanism described here. The times were mea-
sured using the Aristo system, a WAM-emulator based constraint logic programming sys-
tem.
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?- [A,B,C] in 1..N, max(A,B,C).

domain size N | hlc | lookahead
20 | 0.87ms 2360ms
50 | 1.12ms | 36500ms
100 | 1.55ms | 292000ms

TABLE 1.3. max/3 timings (one activation)

We compared four approaches: using a low-level constraint, our high-level constraint mech-
anism, forward checking, and using disjunctions as choices. We used the five houses puzzle
[VH89] as benchmark. The solution involves a constraint plusorminus/3, which we imple-
mented with all approaches. We have measured two high-level constraint versions: one with
the same pruning power as forward checking, one with the same pruning power as looka-
head. The times for finding the solution on a DecStation 5000/150 (50/100Mhz R4000,
46 SPECInt) are shown in Table 1.2. The all times include the time for proving that the
puzzle has only one solution.

We also compared the performance of one activation of the max/3 of Section 1.2 with a
full labeling (lookahead style) version of max/3 (see Table 1.3, timings performed on a
DecStation 5000/125 (25MHz R3000, 16 SPECInt)). Both versions have the same pruning
power. As expected, the lookahead version becomes slower with the cube of the domain size.
The high-level constraint version is between 2700 and 188000 times faster. Domain sizes in
this range are not unusual for max/3. The significance of this example is not the enormous
speedups; instead, it shows that lookahead declarations are often too slow in practice, while
high-level constraints are usable.

1.9 Related Work

Section 1.5 compares our high-level constraints to forward- and lookahead-declarations

[VIS9).

The cardinality operator [VHD91] can express disjunction and negation of constraints. It is
based on constraint entailment (implication). In principle it can be applied to any domain
(e.g. rationals). In contrast, our mechanism is restricted to finite domains, but it achieves
better pruning. E.g., a cardinality operator version of max/3 achieves no pruning for the
example in Section 1.2, since it cannot show negative entailment of one of the two branches
of max/3. The atmost/3 example gives an idea how the cardinality operator can be emulated
with high-level constraints.

Constraint simplification rules [Frii92] replace or augment (combinations of) constraints
with simpler constraints. They can simplify delayed user-defined predicates like max/3, but
they achieve no pruning for the example in Section 1.2. Simplification rules are practical
for stating more global relations and are complementary to high-level constraints.

Echidna [SH92] allows disjunctions of inequalities over real domains. The method employed
for disjunctions can be seen as a specialization of our method for summarizing alternative
intermediate solutions.
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Generalised propagation [LPW92] extends the propagation mechanism from finite domains
to arbitrary domains. A propagation step for a goal results in an approximation of the
solution set that is as close as can be represented in the domain. [LPW92] does not say much
about how to compute these approximations and when to perform propagation steps (when
to wake up constraints). For finite domains, lookahead declarations are a specialization of
generalized propagation. High-level constraints are a bit more general, as they can also
express partial lookahead, i.e., an approximation that is not as close as possible.

[VHSDO1] presents many ideas, among them constructive disjunction of constraints, which
is further explored in [JS93]. As described in the latter paper, constructive disjunction
is a combination of our summarizing process (called global lookahead reduction in [JS93])
with a specialization of the cardinality operator. All of these cardinality operator features
are covered by our single solution refinement (see Section 1.6.2), except positive reduction
which causes just early satisfaction of the constraint, but does not add to the pruning
power. Surprisingly for papers that closely related, the discussion in [JS93] is quite disjoint
with that in the present paper. E.g., there is no discussion of wakeup conditions.

The Nicolog system [Sid93] uses a functional intermediate representation (the projection
language) for constraint networks. Among other things, new constraints can be defined
in this language. However, this language manipulates domains explicitly and is therefore
lower-level than the logic programming approach used for high-level constraints defined with
constraint declarations. On the other hand, it is higher-level than building constraints
with builtin_constraint and the built-in predicates for manipulating domains.

[VHSDOI1] presents a powerful built-in constraint, similar to Nicologs projection language,
which is described in more detail in [DC93]. The same comments apply as for Nicolog.

There is an even lower level than builtin_constraint, which relies on domain vari-
ables and a constraint wakeup mechanism: [CFS93] implements a finite domain constraint
solver with coroutining and backtrackable assignment. Metastructures [Neu90] support user-
enhanced unification for building constraint solvers [Hol90] or coroutining.

Coroutining delays the execution of goals until they are sufficiently instantiated [CMG82,
Nai86]. Like constraint declarations, coroutining declarations do not change the declarative
meaning of a program. The implementation of high-level constraints is closely related to
the implementation of coroutining. However, they are different mechanisms for different
purposes.

1.10 Further Work

[LPW92] inspires the idea that a high-level constraint might not only reduce the domains,
but might also add constraints that are satisfied (entailed) for all intermediate solutions.
Since checking the entailment of every possible constraint is too much overhead, only a
few constraints that are likely to be entailed should be checked. These constraints could be
specified by the programmer or determined in a training run.

Specifying trigger and satisfaction conditions is too much work and error-prone. It may
be possible to generate good conditions automatically, leaving only fine-tuning to the pro-
grammer.
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Another interesting topic is negative high-level constraints. Currently, we can use De-
Morgan’s Law to push the negation down and then use negative versions of the built-in
constraints. Apart from automating this transformation, there’s also the negative forward

checking inference rule [VH89].

1.11 Conclusion

We have presented a mechanism for defining high-level constraints over finite domains. It is
achieved by mechanisms for waking constraints and for collecting and summarizing the so-
lutions of a constraint predicate. Syntactically, high-level constraints are normal predicates
with an additional constraint declaration.

High-level constraints allow a very fine-grained control over the choice between pruning
power and execution time cost. The declarative meaning of the program is the same with
and without constraint declarations. Our mechanism subsumes the domain- and forward-
declaration mechanism of [VH89] and is as easy to implement. As free bonus, the builtin
constraints can be defined with this mechanism.
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