
Removing Anti Dependences by RepairingM. Anton Ertl Andreas Krallfanton,andig@mips.complang.tuwien.ac.atInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8, A-1040 Wien, Austriaanton,andi@mips.complang.tuwien.ac.athttp://www.complang.tuwien.ac.at/home.htmlTel.: (+43-1) 58801 4474Fax.: (+43-1) 505 78 38Abstract. Anti dependences (write-after-read dependences) constrainthe reordering of instructions and limit the e�ectiveness of instructionscheduling and software pipelining techniques for superscalar and VLIWprocessors. Repairing solves this problem: If the de�nition of a variableis moved before a previous use of that variable, compiler-generated re-pair code reconstructs the value that the de�nition destroyed. Repair-ing features several potential advantages over register renaming, anothertechnique for removing anti dependences: less register pressure, less loopunrolling and fewer move instructions.KeyWords: anti dependence, repairing, register renaming, instruction-level parallelism, speculative execution1 IntroductionComputer designers and computer architects have been striving to improveuniprocessor performance since the invention of computers. The next step inthis quest for higher performance is the exploitation of signi�cant amounts ofinstruction-level parallelism. Therefore, superscalar and VLIW (very large in-struction word) machines have been designed, which can execute several instruc-tions in parallel. In order to use these resources the instructions are reordered bythe hardware [Tho64, Tom67, PHS85, Soh90] or by compiler techniques like basicblock instruction scheduling [LDSM80, HG83, GM86, EK92], trace scheduling[Fis81, Ell85] and software pipelining [RG81, Lam88, Rau94]. To ensure cor-rectness, the order between dependent instructions must be maintained, whichrestricts reordering and parallelism.Dependences exist between writes and reads (data ow dependences), readsand writes (anti dependences) and between writes (output dependences) to thesame register or memory location. In this paper, we will discuss only dependencesthrough registers. We will also concentrate on anti dependences. Although thetechniques discussed here can be used to eliminate output dependences, (partial)dead code elimination [KRS94, BC94] is more appropriate for this purpose.Another problem for exploiting signi�cant amounts of instruction-level par-allelism is the limited amount of registers (e.g., � 32 integer registers on all
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popular architectures). By contrast, functional units tend to become abundant;compilers will have a hard time utilizing all of them all the time.We discuss anti dependences and existing techniques for dealing with them inSection 2. In Section 3 we introduce a new technique, that often reduces registerpressure, but usually pays for this with more instructions: repairing. In Section 4we demonstrate the advantages of repairing with a small example. Finally, weshow the potential of repairing with empirical data derived from instructiontraces of real-life applications (Section 5).2 Anti DependencesAnti dependences (and output dependences) are, in some sense, false depen-dences. They are not caused by the data ow between instructions, but byreusing registers. Several methods for dealing with anti dependences have beenproposed:2.1 Register RenamingAnti dependences can be removed (or at least moved) by register renaming[PW86]. This technique can be implemented in hardware [Tom67, PHS85, Soh90]and as compiler optimization [PW86, Lam88]. Note that only compiler-basedrenaming techniques can increase the reordering freedom for the compiler.
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flow dependence anti dependenceFig. 1. Register renamingFigure 1 shows how register renaming works: Originally, register x is used intwo live ranges, resulting in two anti dependences, one from each use (read) of



the �rst live range to the de�nition (write) of the second live range. Registerrenaming transforms the second live range such that it uses the register x0.Renaming has two restrictions:{ Renaming the whole second live range may be impossible, because one ofthe uses requires a speci�c register (e.g., to satisfy the calling convention).{ Renaming does not work, if the two dynamic live ranges involved are stati-cally the same live range (e.g., a live range in a loop).Both problems can be solved by moving x0 to x as soon as the �rst liverange no longer needs x (at the cost of an additional move instruction). Thesecond problem can also be solved by separating the live ranges statically bycode replication (e.g., loop unrolling).12.2 RematerializationInstead of renaming one of the live ranges such that the de�nition of the sec-ond does not destroy the value used in the �rst live range, the compiler canreconstruct the value of the �rst live range just before the value is used. Rema-terialization reconstructs the value by simply recomputing it. Rematerializationof constants has been proposed [CAC+81] and successfully used [BCT92] as analternative to spilling in register allocation.Figure 2 shows, how the scheduler can rematerialize a constant (in instruction�1). In this example, rematerialization moved instruction 3 down across 4 and 5,which originally (anti-) depend on 3. The resulting code still contains antidepen-dences, but they are di�erent and may hinder scheduling less (if this arrangementwere not pro�table, the compiler would use rematerialization di�erently or notat all).Rematerialization reduces the lifetime of the result of a computation, but itmay increase the lifetime of the source operands. This may cause higher registerpressure and more loop unrolling. A simple way to avoid this problem is to re-materialize only constants, because they have no input operands. This approachis used by [BCT92].3 RepairingLike rematerialization, repairing reconstructs the value that was in the registerbefore it was overwritten by the de�nition of the second live range. In contrastto rematerialization, repairing reconstructs the value from downstream valuesusing the inverse operation.In Figure 3, the value of the �rst live range is used to compute y in instruc-tion 2. Later, y is used to reconstruct that value in register x0 using the inverseoperation op (instruction 2).To apply this transformation, the following conditions must be satis�ed:1 The combination of register renaming and loop unrolling is known as modulo variableexpansion [Lam88].
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Fig. 2. Rematerialization of a constant{ Another value has been computed from the value destroyed by the secondde�nition.{ This computation is invertible. This includes arithmetic and logic operationslike add (with modulo arithmetic), subtract, rotate, exclusive or, negationand bitwise complement, but not multiply or oating point operations, whichcan lose information.At �rst sight, repair code seems to make the program worse, especially whencompared to register renaming, which (apparently) costs nothing but a few loopunrollings. But in many cases the repair code can use an otherwise unused exe-cution unit, can be combined [NE89] with other operations or optimized in someother way.Repairing also introduces new data ow dependences (2 ! 2 ! 3 in Fig-ure 3). These dependences pose no problem to the scheduler. It can chose be-tween repairing and other methods depending on the way in which it wantsto arrange the instructions 2, 3 and 4. The data dependences introduced byrepairing just mean that repairing cannot be used for certain arrangements.Fortunately, for those arrangements where repairing o�ers the greatest bene�ts(i.e., the scheduler wants to move instruction 3 far down), it can be applied.The potential advantages of repairing over register renaming are:less register pressure Repairing often uses one register less between the timewhen the value is destroyed and the time when it is repaired.less loop unrolling If the lifetime of a variable is l cycles, and a loop iterationis initiated every s cycles, then at least dl=se values for the variable must
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anti dependenceflow dependenceFig. 3. Repairing using the inverse operation (op)be kept alive concurrently. The loop must be unrolled that many times inorder to to address the values in di�erent registers. Repairing shortens thelifetime of registers, which in turn lowers dl=se and the unrolling factor.fewer move instructions Unless the compiler performs an unhealthy amountof code replication, register renaming introduces move instructions at controlow joins. These moves can often be avoided with repairing.However, repairing also has a potential for making a program worse. Apartfrom adding an operation, it can also lengthen the lifetime of the values thatare needed for the reconstruction. The result of the operation to be inverted(y in Figure 3) is used elsewhere anyway, and keeping it alive for repairing iscertainly better (with respect to register pressure) than keeping the originalvalue alive; but lengthening the lifetime of the other operand (a in Figure 3) cancause higher register pressure than register renaming. Of course, if the operationneeds only one operand in a register (i.e., the operation is unary or it has aninline (small constant) operand), repairing is guaranteed to be pro�table withrespect to register pressure.In some cases, the repairing operation and the operation using this repairedvalue can be combined [NE89], providing the bene�ts of repairing without anycost. For example: additions or subtractions with immediate operands can becombined with additions, subtractions and comparison instructions with an im-mediate operand or with memory instructions; negations can be combined withadditions or subtractions. Figure 4 shows an example, where the scheduler movesan sw instruction down.In comparison with rematerialization, repairing results in less register pres-sure in the worst case: Both extend the live ranges of the values necessary forthe reconstruction down to the instruction performing the reconstruction. But



addu $5, $4, 8sw $3, 4($4)addu $4, ... )repairing addu $5, $4, 8addu $4, ......subu $6, $5, 8sw $3, 4($6) )combining addu $5, $4, 8addu $4, ......sw $3, -4($5)Fig. 4. Repairing used with combining (MIPS assembly)rematerialization can extend them down all the way from the instruction thatcomputed the value to be rematerialized originally, whereas repairing can extendone (a in Figure 3) down from the invertible instruction (which uses the value tobe repaired and is therefore later than the instruction that computed that value)and the other down from the last instruction that uses the value computed bythe invertible instruction (y in Figure 3), which is even later. In particular, re-pairing is guaranteed to be pro�table (with respect to register pressure), if therepairing instruction needs only one register operand, whereas rematerializationis not always pro�table for the analogous case.In the preceding discussion we always wrote about \extending live ranges". Ofcourse, repairing and rematerialization can be applied to these live ranges, too,where appropriate; still, on average, a longer live range will cause higher cost,be it register pressure, reconstruction or move instructions, or loop unrolling.The most important application of repairing will be compiler-based spec-ulative execution. Global code reordering techniques like trace scheduling andsoftware pipelining move instructions up before branches. This is only legal,if the destination register of the moved instruction is dead on the other path.However, by inserting repair code in the other path the compiler can lift thisrestriction (see Figure 5). Note that instruction 2 need not reside in front of thebranch from the beginning|it may have moved up, too.The actual algorithm for repairing depends on the scheduling framework. E.g,a trace scheduling [Ell85] compiler would �rst schedule a trace without restric-tions from anti dependences, then (in the bookkeeping phase) it would determinethe applicability and pro�tability of renaming, repairing and rematerializationfor each anti dependence, and apply the least costly applicable transformation,and �nally it would allocate the registers.4 ExampleWe demonstrate the advantages of repairing with a small example. Figure 6shows the C function strlen, which computes the length of a zero-terminatedstring. Figure 7 shows the assembly language output of a compiler for the MIPSR3000. We have changed the register names to make the program more readable.Figure 8 shows a version of the loop that is software-pipelined using register
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control flowFig. 5. Repairing applied to speculative execution (control ow graph)int strlen(char *s) {char *t = s;while (*s != '\0')s++;return s-t;}Fig. 6. The C function strlen# 1 int strlen(char *s) {strlen:# 2 char *t = s;move t,s # t=s# 3 while (*s != '\0')lb t0,0(s) # t0=*sbeqz t0,end # while (t0 != '\0')loop:# 4 s++;addu s,s,1 # s++lb t0,0(s) # t0=*sbnez t0,loop # while (t0 != '\0')end:# 5 return s-t;subu v0,s,t # return_value = s-tj ra # returnFig. 7. MIPS R3000 assembly language source of strlen



move t,slb0 t0,0(s) addu1 s1,s,1lb1 t1,0(s1) addu2 s2,s1,1loop: lbn t2,0(s2) addun+1 s3,s2,1 beqzn�2 t0,endlbn+1 t3,0(s3) addun+2 s,s3,1 beqzn�1 t1,end1lbn+2 t0,0(s) addun+3 s1,s,1 beqzn t2,end2lbn+3 t1,0(s1) addun+4 s2,s1,1 bnezn+1 t3,loopmove s,s3end: subu v0,s,t j raend1: move s,s1 b endend2: move s,s2 b endFig. 8. Software pipelined version of strlen with register renamingrenaming.2 We assume a load latency of 2, a branch latency of 1, and a pro-cessor that has enough resources to execute one line of Figure 8 per cycle. Theindices of the instructions indicate the iteration the instruction belongs to. Thisexample nicely demonstrates the disadvantages of register renaming. The addusare executed speculatively three iterations in advance and therefore their resultslive four cycles (they are used in the o�-loop arms). Therefore the number ofdi�erent registers necessary for s and the loop unrolling factor is dl=se = 4. Theresult of the lb lives for only three cycles, but since the unrolling factor is four,we must give four registers to it, too3. At the exit of the loop move instructionshave been generated to reunite the s values into one register.move t,slb0 t0,0(s) addu1 s,s,1lb1 t1,0(s) addu2 s,s,1loop: lbn t2,0(s) addun+1 s,s,1 beqzn�2 t0,endlbn+1 t0,0(s) addun+2 s,s,1 beqzn�1 t1,endlbn+2 t1,0(s) addun+3 s,s,1 bnezn t2,loopend: subu s,s,3subu v0,s,t j raFig. 9. Software pipelined version of strlen with repair codeFigure 9 shows another version of the loop, this time software-pipelined withrepairing and register renaming. s satis�es the conditions for repairing with theinverse operation and can safely be destroyed by incrementing it. Therefore sneeds only one register. It does not pay o� to destroy and repair the results ofthe lbs, so we have to use register renaming in this case. Since these results livefor three cycles, the loop is unrolled three times. At the o�-loop path, s has to2 For simplicity, we assume that the loads cannot have exceptions. Speculative execu-tion of trapping instructions is discussed in, e.g., [EK94].3 We could have saved the one register by unrolling lcm(4; 3) = 12 times [Lam88].



be repaired to its proper value. s has been destroyed by incrementing thrice.Therefore the repair code consists of three decrements that have been combinedinto one decrement by three. In summary, repairing saves four registers (44%),one loop iteration (25%) and some other code as well.5 PotentialThis section shows how important repairing is for real-world programs. We pro-duced traces (up to 100,000,000 instructions) of various applications and countedthe antidependences in them and how many of them can be removed with variousforms of repairing.This trace-based method has some disadvantages: it does not see all antide-pendences that the compiler has to consider (in particular, it does not see an-tidependences to o�-trace instructions), and it treats all antidependences equal,no matter how important or unimportant they are for the compiler. The advan-tage of this method is that it is independent from the compiler; if, in contrast,we implemented repairing in a compiler and presented empirical data based onexperiments with this compiler, the results would strongly depend on the sched-uler and on the register allocator of that compiler. Note that the results wepresent do not depend much on the compiler; although the compilers we usedperformed register allocation, this has little inuence, because almost every useof a value causes an antidependence, independent of the register allocator, andthe uses themselves are also quite independent of the register allocator (as longas moves and spilling are minor factors). Our empirical data supports this view:you cannot tell from the data which compiler produced the code.The applications used are: abalone, a board game; agrep, an approximatepattern matcher; dvips, a �lter used in typesetting; gcc-cc1, a part of the GNUC compiler; gzip, a compression program; and sicstus, a Prolog interpreter. Allprograms were compiled for the Alpha architecture under OSF/1, either withgcc-2.7.0 (abalone, gcc-cc1, sicstus) or with cc-3.1.1 (the other programs).Figure 10 shows the results. The column instructions displays the trace length,anti dep/inst. the number of anti dependences per instruction, and the next threecolumns display what portion of these anti dependences can be eliminated withvarious forms of repairing: repairing comprises all forms of repairing, one reg.operand are those forms of repairing that are guaranteed to be pro�table withrespect to register pressure, and combinable are those cases where the repairingcode can be combined with the instruction that uses the repaired value (andtherefore repairing is for free, in addition to being pro�table).18%{34% of all antidependences can be removed with repairing. Only abouthalf of them (8.6%{16.6%) are guaranteed to be pro�table with respect to regis-ter pressure according to our simple one-register-operand criterion, so it is prob-ably a good idea to invest a little more in pro�tability analysis. 4.1%{12.6% ofthe anti dependences can be repaired for free, providing the bene�ts of repairingwithout any cost.



anti dep./ one reg.program instructions inst. repairable operand combinableabalone 100,000,000 1.25 30.1% 15.8% 8.1%agrep 29,251,288 1.35 34.0% 8.6% 4.2%dvips 51,155,896 1.22 18.2% 10.9% 4.1%gcc-cc1 100,000,000 1.17 25.7% 16.6% 12.6%gzip 100,000,000 1.37 27.2% 14.1% 4.8%sicstus 91,433,314 1.16 31.8% 15.8% 10.7%Fig. 10. Portion of anti dependences that can be removed with various forms ofrepairingCompilers for register-starved architectures (in particular, the 386 architec-ture) can employ repairing of combinable instructions now to reduce the registerpressure. For other architectures, there are probably still a few years left untilregister pressure becomes a signi�cant problem. The large amount of parallelunits available by then will make any form of repairing attractive that reducesregister pressure.6 ConclusionsWe have introduced repairing, a compiler technique that can remove anti de-pendences and reduce register pressure: If an instruction writing to a register ismoved up across an instruction reading from that register, repairing reconstructsthe destroyed value from derived values using the inverse operation.Repairing often has advantages over other techniques for removing anti de-pendences: Repairing produces less register pressure and it produces shorter liveranges, requiring less loop unrolling or fewer move instructions.18%{34% of all anti dependences can be removed by repairing, about halfof them are guaranteed to reduce register pressure (others may be pro�table,too), and 4.1%{12.6% of antidependences can be removed in a way that reducesregister pressure without increasing the number of executed instructions.References[BC94] Preston Briggs and Keith D. Cooper. E�ective partial redundancy elimina-tion. In SIGPLAN '94 Conference on Programming Language Design andImplementation, pages 159{170, 1994.[BCT92] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization.In SIGPLAN '92 Conference on Programming Language Design and Imple-mentation, pages 311{321, 1992.[CAC+81] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,Martin E. Hopkins, and Peter W. Markstein. Register allocation via color-ing. Computer Languages, 6(1):45{57, 1981. Reprinted in [Sta90].
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