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Abstract. We designed heuristics for applying the list scheduling algorithm
to processors with complex pipelines. On these processors the pipeline can
stall due to resource contention (structural hazards) in addition to the usual
data hazards. Conventional heuristics consider only data hazards. Our heuri-
stics reduce structural hazards, too. Code with much instruction-level paral-
lelism is optimized to avoid structural hazards, sequential code is scheduled
for reducing data hazards. Embedded in a postpass strategy our scheduler
removes 60%—-100% of the removable stalls from conventionally scheduled
code.

1 Introduction

Current RISC processors achieve their high performance by exploiting parallelism
through pipelining and multiple execution units. As a consequence, the results of
previous instructions are sometimes not available when the next instruction can be
executed. E.g., on the Motorola MC88100 one floating point multiplication can be
started at every cycle, but the result is only available after six cycles. If the next
instruction needs the result (date hazard), it has to wait and the pipeline stalls.
The problem of arranging the instructions in a way that reduces the number of wait
cycles is known as instruction scheduling or instruction reordering.

Stalls can also occur when two instructions want to use the same pipeline stage
at the same time (structural hazard). E.g., on the MC88100 only one result at a
time can be written back to the register file, but up to three execution units may
want to write a result. This plays an important role in instruction scheduling: The
main cause for suboptimal scheduling in the Harris C compiler for the MC88100 is
contention for the writeback stage. Structural hazards arise in the new superscalar
processors, too, because some of their functional units are not fully replicated.

Although instruction scheduling is now standard in RISC compilers, only few
attempts have been made to address structural hazards [BHE91]. Therefore we
designed a scheduler that reduces the number of structural hazards. As an example

we used the MC88100 RISC processor [Mot90].
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2 List scheduling

Even a simple formulation of optimal instruction scheduling is an NP-complete
search problem [HG83]. A search for the optimal solution, as in [EK91], can take
exponential time. Therefore most instruction schedulers try to find good, but possi-
bly suboptimal schedules using heuristic algorithms. A short overview of the field is
given in [Kas90, chapter 8.5]

FORTRAN unscheduled 88000 code
do i=1,n QL5:
y(iy) = y(iy)+a*x(ix) 1d r12,r14[r5] ;r12=x(ix)
ix = ix+incx fmul.gss r12,r2,r12 ;ri2=a*ri2
iy = iy+incy 1d r11,r3[r6] ;rit=y(iy)
fadd.sss r12,r12,r11 ;r12=ri12+rii
st r12,r3[r6] ;y(iy)=ri2
addu r5,r5,r4 ;ix=ix+incx
addu r9,r9,1 ;i=i+l
cmp r10,r9,r8 ;i<=n7
bbl.n le,r10,0L5 ;do
addu r6,r6,r7 ;iy=iy+incy
31drll,r3[r6] 11dr12,r14[r5]
3 0
3 2fmul .sssrl12,r2,r12 6 addu r5,r5,r4
/6
4 fadd.sss rl12,r12,r11 7 addu r9,r9, 1
K K
5 st rl12,r3[r6] 8 cnprl0,r9,r8
0 K
10 addu r6,r6,r7 9 bbl.nle, rl0, @

Fig.1. SAXPY loop from the Linpack benchmark and its data dependence graph. Edge
lengths = 0 indicate write-after-read dependences, edge lengths > 0 are instruction laten-
cies.

The most common algorithm is list scheduling [LDSM80, GM86, War90, SKAH91].
It builds a data dependence graph for each basic block. Figure 1 shows an example
graph. An edge from instruction a to instruction b indicates that a must be executed
before b to preserve the correctness of the overall program. Dependence edges exist
between reads and writes, writes and reads and between writes to the same register

or memory location®.

! The algorithm in [HG83] relaxes this restriction to allow swapping live ranges of the same
register.



The data dependence graph is essentially the expression evaluation graph (drawn
up-side-down), with some edges added due to dependencies between memory acces-
ses and with write-after-read edges added due to allocations of values to the same
register.

list_scheduling(graph, select)
schedule<——empty
while graph # empty
leaders—{nodes in graph without parents}
next_inst—select(leaders)
append next_inst to schedule
remove next_inst from graph

Fig. 2. The list scheduling algorithm

After building the dependence graph the algorithm selects one of the leaders
(instructions without predecessors) and removes it from the graph. This step is
repeated until the graph is empty. The order in which the instructions are removed
is the new instruction order of the basic block (see figure 2).

The selection function determines the quality of the schedule. A typical selection
function uses:

smallest earliest execution time (EET) The EET of an instruction is the cycle
when the instruction can start executing, because it is no longer delayed by any
hazards. Nothing can be gained by choosing an instruction with a higher EET,
because (in the absence of structural hazards) a leading instruction cannot be
delayed by instructions that are executed before its EET has arrived. Ties are
broken by

maximum path length The path length is the sum of the latencies along the
longest path to the end of the basic block?. This heuristic exposes delay slots
early, while there are other instructions to fill them.

ep(leaders)
ready leaders—{leaders with minimal EET}
return one of the ready_leaders with maximal path length

Fig. 3. The selection function ep

We call this selection function ep (see Figure 3). As an example, consider again
the SAXPY loop of figure 1. In the beginning the graph has three leaders, the in-
structions 1 (1d), 3 (1d) and 7 (addu), all with EET=0. Instruction 1 is selected,

2 The path length is defined differently in [SKAH91]



because it has the largest path length to the end (15 cycles). After its removal from
the graph the instructions 3, 7, 2 (fmul) and 6 (addu) are the leaders. The fmul’s
EET=3, because it depends upon the result of instruction 1, the other instructions’
EET=1. The final schedule is shown in figure 43.

QL5:
1d r12,r14[r5] ;r12=x(ix)
14 ri1,r3[ré] ;rii=y(iy)
addu r9,r9,1 ;i=i+l
fmul.gsss r12,r2,r12 ;ri2=a*ril2
cmp r10,r9,r8 ;i<=n7
addu r5,r5,r4 ;ix=ix+incx
fadd.sss r12,r12,r11 ;ri12=ri12+ri1
st r12,r3[r6] ;y(iy)=ri2
bbl.n le,r10,0L5 ;do
addu r6,r6,r7 ;iy=iy+incy

Fig.4. SAXPY loop scheduled using ep

3 Complex pipelines

The common heuristics used in schedulers are designed for simple, straight pipelines,
where the only bottleneck is the entry into the pipeline. In real processors like the
Motorola 88100 (see figure 5) additional problems occur, which must be considered
by the scheduler.

Structural hazards, i.e. the situation when several instructions want to use the
same pipeline stage, can arise in two ways:

— The stage has several inputs (subpipe merge). If two instructions arrive at a
pipeline merge point at the same time, one of them has to wait. An example
is the writeback stage in the 88100, which is granted using a hardware priority
scheme. Another example are not fully replicated functional units in superscalar
processors.

— One instruction is already in the stage when another instruction arrives. This
happens when an instruction uses a stage for more than one cycle or when an
instruction stalls in a stage. An example is the Add2 stage in the 88100, which
is used for several cycles by the divide instructions.

Structural hazards are becoming more wide-spread with the advent of supersca-
lar processors: The 88110 [DA92] (a dual-issue processor) has only two writeback

? The EET is computed without considering structural hazards. This results in a better
schedule in this case.
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busses, but up to six values to write back. Most of its functional units are not re-
plicated, resulting in instruction class conflicts. Similarly, the SuperSPARC [BK92]
(also known as Viking, triple-issue) has only two integer writeback slots.

As an example for structural hazards, let’s take another look at the SAXPY loop,
as scheduled using ep (see figure 4). The fmul is scheduled to use the result of the
first 1d as soon as it is available. Unfortunately the writeback of the 1d collides with
the writeback of the addu. The writeback slot is granted to the addu and the fmul
(and the rest of the loop) stalls one cycle to wait for the result of the 1d.

The Marion System [BHE91] deals with structural hazards by using resource
vectors. The method used in microcode compaction is similar [LDSM80]. If an in-
struction conflicts with the already scheduled instructions, its EET is increased. This
scheme works satisfactorily when conflicts are rare. But if the stage the instructions
compete for is a bottleneck, a more aggressive heuristic is needed, that keeps the
stage busy. Every cycle lost in a bottleneck stage ends up as a stall cycle.

4 A Better Selection Function

The argument supporting the selection function ep does no longer hold, if structural
hazards are considered. An instruction, that executes, before the EET of an other
instruction has arrived, can delay the other instruction through structural hazards.



4.1 Switching Between Heuristics

In mainly sequential code data hazards are likely to occur. Structural hazards are
easy to avoid, because the pipeline is often idle. On the other hand, in code with much
instruction-level parallelism the execution speed is limited by pipeline contention.
Structural hazards are common. Data hazards are easy to avoid, because there are
many independent instructions that can be scheduled into delay slots.

seq_par(leaders)
if parallelism<threshold
return seq(leaders)
else
return par(leaders)

Fig. 6. The main selection function seq_par

Therefore our selection function seq_par switches between a selection function
for sequential code and one for parallel code. Both selection functions are described
below. If there are no structural hazards, they produce the same results as ep. The
choice is based on the parallelism of the basic block. We define the parallelism as:

cycles needed by the most-used stage

arallelism =
b critical path length

This ratio is maintained as instructions are scheduled, thereby adjusting the strategy
to the situation. We empirically determined the best switching threshold to be 1.1
(on the 88100 using the selection functions described below). The switching function
is shown in figure 6.

The initial parallelism of the SAXPY loop is 0.625. During the scheduling seq is
used most of the time, only at the end the parallelism reaches 2 (when instructions 9
and 10 are leaders).

A related idea is used in Integrated Prepass Scheduling [GH88, BEH91], which
tries to reconcile instruction scheduling with register allocation. It switches between
scheduling for pipelining and scheduling for register allocation based on the number
of used and available registers.

4.2 The Sequential Heuristic Seq

In sequential code the instruction with the longest path length must be executed as
soon as possible. On a machine with structural hazards scheduling an early instruc-
tion can delay a later instruction. Since we want to execute the instruction with the
longest path length as soon as possible, we select only this instruction or an instruc-
tion that does not delay its execution. Among those we choose with a secondary
selection function. Seq is shown in figure 7.

We tested several reasonable secondary selection functions and found that they
did not make any difference. In the measurements we seq itself as secondary function.



seq(leaders)
critical_leaders«—{leaders with maximal path length}
ready_critical«— one of critical_leaders with minimal EET
earlier—{leaders that do not increase the EET of ready_critical when one of
them is scheduled before ready_critical}
if earlier= 0
return ready _critical
else
return secondary(earlier)

Fig.7. The sequential selection function seq

Let’s see how seq handles the SAXPY loop. After scheduling the first 1d the
fmul becomes the ready_critical instruction, because it has maximal path length.
The second 14 still fits in front of it, but the addu does not—it would delay the fmul
as we have already seen. So the fmul is scheduled immediately. The addu easily fits
in one of the later delay slots. The resulting schedule is optimal (see figure 8).

QL5:
1d r12,r14[r5] ;r12=x(ix)
14 ri1,r3[ré] ;rii=y(iy)
fmul.gss r12,r2,r12 ;ri2=a*ri2
addu r9,r9,1 ;i=i+l
cmp r10,r9,r8 ;i<=n7
addu r5,r5,r4 ;ix=ix+incx
fadd.sss r12,r12,r11 ;ri12=ri12+rii
st r12,r3[r6] ;y(iy)=ri2
bbl.n le,r10,0L5 ;do
addu r6,r6,r7 ;iy=iy+incy

Fig.8. SAXPY loop scheduled using seq or seq_par

4.3 The Parallel Heuristic Par

In parallel code the scheduler has two goals: to avoid structural hazards and to
keep the bottleneck stages busy. Therefore it should select instructions that use the
bottleneck stages and do not cause structural hazards.

While this is a good solution for problems like nonpipelined functional units and
nonreplicated functional units in superscalar processors, it is not the whole story.
Depending on the pipeline structure, such a heuristic can lead to the suppression
of some instruction classes, causing unbalanced and bad scheduling. Applied to the
88100 writeback problem, it suppresses non-integer instructions, because they do
not use the writeback stage as early as integer instructions.



Therefore our selection function delays non-integer instructions only if it knows
that non-integer instructions will be preferred soon. L.e.| if an integer instruction in
the next cycle after the current one would cause a writeback collision.

The parallel selection function uses the EET as the primary criterion, the in-
struction class heuristic described above as the second, and path length as the least
significant criterion. The EET is first, because in parallel code we cannot afford to
miss a cycle. Path length is last, because it is not so important in parallel code.
The switching scheme protects from the problems that this selection function may
exhibit in sequential code.

par(leaders)
ready_leaders«—{leaders with minimal EET}
non_conflicting—{ready_leaders that do mnot conflict with the scheduled
instructions}
if non_conflicting= # non_conflicting—ready_leaders
if an instruction that uses the bottleneck stage early causes a collision when
executed in the next cycle
early _users—{non_conflicting that use the bottleneck stage early}
if early_users= () early_users—mnon_conflicting
else
early_users<—non_conflicting
return one of the early_users with maximal path length

Fig. 9. The parallel selection function par

Paris shown in figure 9. As we present 1t, this heuristic is quite specific for the
writeback problem, but it can be adapted to other situations easily. Just change the
instruction class heuristic appropriately.

How well does par do on the (sequential) SAXPY loop? The first instruction
chosen is again the first 1d. The instruction class heuristic then selects the addu and
saves the second 1d for the third cycle to avoid ep’s writeback collision. Then the
scheduler is faced with integer instructions and the fmul. Since the instruction class
heuristic has higher precedence than path length, an integer instruction is chosen
(to save the fmul for the next cycle, when an integer instruction would cause a
writeback collision with the second 1d). Par’s schedule (see figure 10) is as bad as
ep’s, which demonstrates the need to switch to seq when scheduling sequential code.

5 Results

We implemented these ideas in a prototype scheduler for the Motorola 88100. For
simplicity it schedules the assembly language output of compilers (also known as
postpass strategy) and it does not perform alias analysis, i.e. all memory references
are treated as possibly equal.

To determine the efficiency of our heuristics we scheduled four benchmarks
and compared the results with the optimal schedules produced by the scheduler



OL5:

1d r12,r14[r5] ;r12=x(ix)
addu r9,r9,1 ;i=i+l

14 ri1,r3[ré] ;rii=y(iy)
cmp r10,r9,r8 ;i<=n7
fmul.gss r12,r2,r12 ;ri2=a*ri2
addu r5,r5,r4 ;ix=ix+incx
fadd.sss r12,r12,r11 ;ri12=ri12+rii
st r12,r3[r6] ;y(iy)=ri2
bbl.n le,r10,0L5 ;do

addu r6,r6,r7 ;iy=iy+incy

Fig.10. SAXPY loop scheduled using par

in [EK91]. The benchmark programs are: an abstract Prolog machine interpreter
(VAM), the dhrystone synthetic integer benchmark (dhry), a fast Fourier transfor-
mation routine (fft), and the SAXPY loop with a bit of scaffolding (SAXPY). These
benchmarks were compiled with the Harris C compiler, which already includes an
instruction scheduler and therefore provides a good baseline for comparison.

We tested the following heuristics: EET, break ties with path length (ep); our
sequential selection function (seq), our parallel selection function (par); and switching
between seq and par (seq_par). opt denotes the optimal schedule and orig the original
Harris-scheduled code.

Prog. | orig ep seq par seq_par opt |global%
SAXPY| 44/0% 45/-50% 42/100% 43/ 50% 42/100%  42/100% 4.8%
it 641/0% 641/ 0% 641/ 0% 640/100% 640/100% 640/100% | 0.2%

dhry | 519/0% 520/-13% 514/ 63% 518/ 13% 514/ 63% 511/100% | 1.0%
VAM  [8335/0% 8328/ 4% 8273/ 39% 8283/ 33% 8239/ 60% 8174/100% | 1.2%

100% schedule
- E—i
original
0% schedule
-50%
[ sqpr sy M o M o

Fig.11. Static execution cycles/improvement on orig as percentage of possible improve-
ment
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Fig. 12. Performance at varying parallelism thresholds

Figure 11 shows static measurements of the benchmarks (cumulated execution
times of all basic blocks) in tabular and graphic form. The last column shows the
improvement of seq_par relative to the total (static) cycles. Figure 12 shows the
behaviour of various switching combinations of seq, par and ep at various switching
thresholds.

Both seq and par are nearly always as good as or better than ep, even at their
weak points (parallel and sequential code respectively). Since a postpass strategy can
exploit less parallelism, we expect par to perform even better in a prepass strategy.
Both of them are better than the other at their respective strong points, so seg_par
combines them nicely to remove between 60% and 100% of the avoidable stalls in
the original code. This corresponds to an absolute gain of up to 5%. Execution time
measurement of a few programs also show an improvement of 1%-5%.

The measurements of the scheduling time have to be taken with a grain of salt,
since we did not build the scheduler for efficiency. Replacing ep with seq_parincreases
scheduling time by 6%. Since scheduling takes only a small amount of compile time,
we consider seq_par to be cost-effective.

6 Further work

The ideas presented here should be integrated into a code generation system like
Marion. The most difficult problem is finding a nice way to generate or specify the
instruction class heuristic of par in a general way.

If some instructions (like divide instructions) occupy a stage for a long time (for
a typical basic block length or longer), it may be useful to preschedule them by
adding edges to the dependence graph between these instructions and others using
the same stage.



Currently the parallelism-dependent behaviour is controlled by parameters for
the whole remaining basic block. In long basic blocks the local parallelism often dif-
fers from the value parallelism. Therefore parameters that reflect the local situation
are useful.

The parallel /sequential distinction can be used for integrating register allocation
and instruction scheduling: In parallel code it i1s cheap to schedule for register al-
location, whereas in sequential code spilling registers is cheap: The spill code fills
delay slots.

7 Conclusion

We have described heuristics for dealing with structural hazards in a list scheduling
framework. The heuristic selection function seq is designed for scheduling code with
low instruction-level parallelism. It gives absolute priority to the instruction with the
longest path length to the end of the basic block. Other instructions are scheduled
earlier only if they do not interfere. The heuristic par is designed for scheduling
parallel code. Tt uses an instruction class selection heuristic (as secondary heuristic)
to avoid structural hazards. Our scheduler switches between these two heuristics for
each new instruction to schedule depending on the parallelism of the remaining basic
block. This technique removes 60%—100% of the removable stalls or up to 5% of the
cycles from already conventionally scheduled code.
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