
Instruction Scheduling forComplex PipelinesM. Anton Ertl Andreas KrallInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8, A-1040 Wienfanton,andig@mips.complang.tuwien.ac.atTel.: (+43-1) 58801 f4459,4462gAbstract. We designed heuristics for applying the list scheduling algorithmto processors with complex pipelines. On these processors the pipeline canstall due to resource contention (structural hazards) in addition to the usualdata hazards. Conventional heuristics consider only data hazards. Our heuri-stics reduce structural hazards, too. Code with much instruction-level paral-lelism is optimized to avoid structural hazards, sequential code is scheduledfor reducing data hazards. Embedded in a postpass strategy our schedulerremoves 60%{100% of the removable stalls from conventionally scheduledcode.1 IntroductionCurrent RISC processors achieve their high performance by exploiting parallelismthrough pipelining and multiple execution units. As a consequence, the results ofprevious instructions are sometimes not available when the next instruction can beexecuted. E.g., on the Motorola MC88100 one oating point multiplication can bestarted at every cycle, but the result is only available after six cycles. If the nextinstruction needs the result (data hazard), it has to wait and the pipeline stalls.The problem of arranging the instructions in a way that reduces the number of waitcycles is known as instruction scheduling or instruction reordering.Stalls can also occur when two instructions want to use the same pipeline stageat the same time (structural hazard). E.g., on the MC88100 only one result at atime can be written back to the register �le, but up to three execution units maywant to write a result. This plays an important role in instruction scheduling: Themain cause for suboptimal scheduling in the Harris C compiler for the MC88100 iscontention for the writeback stage. Structural hazards arise in the new superscalarprocessors, too, because some of their functional units are not fully replicated.Although instruction scheduling is now standard in RISC compilers, only fewattempts have been made to address structural hazards [BHE91]. Therefore wedesigned a scheduler that reduces the number of structural hazards. As an examplewe used the MC88100 RISC processor [Mot90].
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2 List schedulingEven a simple formulation of optimal instruction scheduling is an NP-completesearch problem [HG83]. A search for the optimal solution, as in [EK91], can takeexponential time. Therefore most instruction schedulers try to �nd good, but possi-bly suboptimal schedules using heuristic algorithms. A short overview of the �eld isgiven in [Kas90, chapter 8.5]FORTRANdo i=1,ny(iy) = y(iy)+a*x(ix)ix = ix+incxiy = iy+incy unscheduled 88000 code@L5:ld r12,r14[r5] ;r12=x(ix)fmul.sss r12,r2,r12 ;r12=a*r12ld r11,r3[r6] ;r11=y(iy)fadd.sss r12,r12,r11 ;r12=r12+r11st r12,r3[r6] ;y(iy)=r12addu r5,r5,r4 ;ix=ix+incxaddu r9,r9,1 ;i=i+1cmp r10,r9,r8 ;i<=n?bb1.n le,r10,@L5 ;doaddu r6,r6,r7 ;iy=iy+incy
1 ld r12,r14[r5]

2 fmul.sss r12,r2,r12

4 fadd.sss r12,r12,r11

5 st r12,r3[r6]

10 addu r6,r6,r7

7 addu r9,r9,1

8 cmp r10,r9,r8

9 bb1.n le,r10,@5

6 addu r5,r5,r4

3 ld r11,r3[r6]
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Fig. 1. SAXPY loop from the Linpack benchmark and its data dependence graph. Edgelengths = 0 indicate write-after-read dependences, edge lengths > 0 are instruction laten-cies.The most common algorithm is list scheduling [LDSM80, GM86,War90, SKAH91].It builds a data dependence graph for each basic block. Figure 1 shows an examplegraph. An edge from instruction a to instruction b indicates that a must be executedbefore b to preserve the correctness of the overall program. Dependence edges existbetween reads and writes, writes and reads and between writes to the same registeror memory location1.1 The algorithm in [HG83] relaxes this restriction to allow swapping live ranges of the sameregister.



The data dependence graph is essentially the expression evaluation graph (drawnup-side-down), with some edges added due to dependencies between memory acces-ses and with write-after-read edges added due to allocations of values to the sameregister.list scheduling(graph, select)schedule emptywhile graph 6= emptyleaders fnodes in graph without parentsgnext inst select(leaders)append next inst to scheduleremove next inst from graphFig. 2. The list scheduling algorithmAfter building the dependence graph the algorithm selects one of the leaders(instructions without predecessors) and removes it from the graph. This step isrepeated until the graph is empty. The order in which the instructions are removedis the new instruction order of the basic block (see �gure 2).The selection function determines the quality of the schedule. A typical selectionfunction uses:smallest earliest execution time (EET) The EET of an instruction is the cyclewhen the instruction can start executing, because it is no longer delayed by anyhazards. Nothing can be gained by choosing an instruction with a higher EET,because (in the absence of structural hazards) a leading instruction cannot bedelayed by instructions that are executed before its EET has arrived. Ties arebroken bymaximum path length The path length is the sum of the latencies along thelongest path to the end of the basic block2. This heuristic exposes delay slotsearly, while there are other instructions to �ll them.ep(leaders)ready leaders fleaders with minimal EETgreturn one of the ready leaders with maximal path lengthFig. 3. The selection function epWe call this selection function ep (see Figure 3). As an example, consider againthe SAXPY loop of �gure 1. In the beginning the graph has three leaders, the in-structions 1 (ld), 3 (ld) and 7 (addu), all with EET=0. Instruction 1 is selected,2 The path length is de�ned di�erently in [SKAH91]



because it has the largest path length to the end (15 cycles). After its removal fromthe graph the instructions 3, 7, 2 (fmul) and 6 (addu) are the leaders. The fmul'sEET=3, because it depends upon the result of instruction 1, the other instructions'EET=1. The �nal schedule is shown in �gure 43.@L5:ld r12,r14[r5] ;r12=x(ix)ld r11,r3[r6] ;r11=y(iy)addu r9,r9,1 ;i=i+1fmul.sss r12,r2,r12 ;r12=a*r12cmp r10,r9,r8 ;i<=n?addu r5,r5,r4 ;ix=ix+incxfadd.sss r12,r12,r11 ;r12=r12+r11st r12,r3[r6] ;y(iy)=r12bb1.n le,r10,@L5 ;doaddu r6,r6,r7 ;iy=iy+incyFig. 4. SAXPY loop scheduled using ep3 Complex pipelinesThe common heuristics used in schedulers are designed for simple, straight pipelines,where the only bottleneck is the entry into the pipeline. In real processors like theMotorola 88100 (see �gure 5) additional problems occur, which must be consideredby the scheduler.Structural hazards, i.e. the situation when several instructions want to use thesame pipeline stage, can arise in two ways:{ The stage has several inputs (subpipe merge). If two instructions arrive at apipeline merge point at the same time, one of them has to wait. An exampleis the writeback stage in the 88100, which is granted using a hardware priorityscheme. Another example are not fully replicated functional units in superscalarprocessors.{ One instruction is already in the stage when another instruction arrives. Thishappens when an instruction uses a stage for more than one cycle or when aninstruction stalls in a stage. An example is the Add2 stage in the 88100, whichis used for several cycles by the divide instructions.Structural hazards are becoming more wide-spread with the advent of supersca-lar processors: The 88110 [DA92] (a dual-issue processor) has only two writeback3 The EET is computed without considering structural hazards. This results in a betterschedule in this case.
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2Fig. 5. Pipeline stages in the Motorola 88100. Numbers indicate priorities.busses, but up to six values to write back. Most of its functional units are not re-plicated, resulting in instruction class conicts. Similarly, the SuperSPARC [BK92](also known as Viking, triple-issue) has only two integer writeback slots.As an example for structural hazards, let's take another look at the SAXPY loop,as scheduled using ep (see �gure 4). The fmul is scheduled to use the result of the�rst ld as soon as it is available. Unfortunately the writeback of the ld collides withthe writeback of the addu. The writeback slot is granted to the addu and the fmul(and the rest of the loop) stalls one cycle to wait for the result of the ld.The Marion System [BHE91] deals with structural hazards by using resourcevectors. The method used in microcode compaction is similar [LDSM80]. If an in-struction conicts with the already scheduled instructions, its EET is increased. Thisscheme works satisfactorily when conicts are rare. But if the stage the instructionscompete for is a bottleneck, a more aggressive heuristic is needed, that keeps thestage busy. Every cycle lost in a bottleneck stage ends up as a stall cycle.4 A Better Selection FunctionThe argument supporting the selection function ep does no longer hold, if structuralhazards are considered. An instruction, that executes, before the EET of an otherinstruction has arrived, can delay the other instruction through structural hazards.



4.1 Switching Between HeuristicsIn mainly sequential code data hazards are likely to occur. Structural hazards areeasy to avoid, because the pipeline is often idle. On the other hand, in code with muchinstruction-level parallelism the execution speed is limited by pipeline contention.Structural hazards are common. Data hazards are easy to avoid, because there aremany independent instructions that can be scheduled into delay slots.seq par(leaders)if parallelism<thresholdreturn seq(leaders)elsereturn par(leaders)Fig. 6. The main selection function seq parTherefore our selection function seq par switches between a selection functionfor sequential code and one for parallel code. Both selection functions are describedbelow. If there are no structural hazards, they produce the same results as ep. Thechoice is based on the parallelism of the basic block. We de�ne the parallelism as:parallelism = cycles needed by the most-used stagecritical path lengthThis ratio is maintained as instructions are scheduled, thereby adjusting the strategyto the situation. We empirically determined the best switching threshold to be 1.1(on the 88100 using the selection functions described below). The switching functionis shown in �gure 6.The initial parallelism of the SAXPY loop is 0.625. During the scheduling seq isused most of the time, only at the end the parallelism reaches 2 (when instructions 9and 10 are leaders).A related idea is used in Integrated Prepass Scheduling [GH88, BEH91], whichtries to reconcile instruction scheduling with register allocation. It switches betweenscheduling for pipelining and scheduling for register allocation based on the numberof used and available registers.4.2 The Sequential Heuristic SeqIn sequential code the instruction with the longest path length must be executed assoon as possible. On a machine with structural hazards scheduling an early instruc-tion can delay a later instruction. Since we want to execute the instruction with thelongest path length as soon as possible, we select only this instruction or an instruc-tion that does not delay its execution. Among those we choose with a secondaryselection function. Seq is shown in �gure 7.We tested several reasonable secondary selection functions and found that theydid not make any di�erence. In the measurements we seq itself as secondary function.



seq(leaders)critical leaders fleaders with maximal path lengthgready critical one of critical leaders with minimal EETearlier fleaders that do not increase the EET of ready critical when one ofthem is scheduled before ready criticalgif earlier= ;return ready criticalelsereturn secondary(earlier)Fig. 7. The sequential selection function seqLet's see how seq handles the SAXPY loop. After scheduling the �rst ld thefmul becomes the ready critical instruction, because it has maximal path length.The second ld still �ts in front of it, but the addu does not|it would delay the fmulas we have already seen. So the fmul is scheduled immediately. The addu easily �tsin one of the later delay slots. The resulting schedule is optimal (see �gure 8).@L5:ld r12,r14[r5] ;r12=x(ix)ld r11,r3[r6] ;r11=y(iy)fmul.sss r12,r2,r12 ;r12=a*r12addu r9,r9,1 ;i=i+1cmp r10,r9,r8 ;i<=n?addu r5,r5,r4 ;ix=ix+incxfadd.sss r12,r12,r11 ;r12=r12+r11st r12,r3[r6] ;y(iy)=r12bb1.n le,r10,@L5 ;doaddu r6,r6,r7 ;iy=iy+incyFig. 8. SAXPY loop scheduled using seq or seq par4.3 The Parallel Heuristic ParIn parallel code the scheduler has two goals: to avoid structural hazards and tokeep the bottleneck stages busy. Therefore it should select instructions that use thebottleneck stages and do not cause structural hazards.While this is a good solution for problems like nonpipelined functional units andnonreplicated functional units in superscalar processors, it is not the whole story.Depending on the pipeline structure, such a heuristic can lead to the suppressionof some instruction classes, causing unbalanced and bad scheduling. Applied to the88100 writeback problem, it suppresses non-integer instructions, because they donot use the writeback stage as early as integer instructions.



Therefore our selection function delays non-integer instructions only if it knowsthat non-integer instructions will be preferred soon. I.e., if an integer instruction inthe next cycle after the current one would cause a writeback collision.The parallel selection function uses the EET as the primary criterion, the in-struction class heuristic described above as the second, and path length as the leastsigni�cant criterion. The EET is �rst, because in parallel code we cannot a�ord tomiss a cycle. Path length is last, because it is not so important in parallel code.The switching scheme protects from the problems that this selection function mayexhibit in sequential code.par(leaders)ready leaders fleaders with minimal EETgnon conicting fready leaders that do not conict with the scheduledinstructionsgif non conicting= ; non conicting ready leadersif an instruction that uses the bottleneck stage early causes a collision whenexecuted in the next cycleearly users fnon conicting that use the bottleneck stage earlygif early users= ; early users non conictingelseearly users non conictingreturn one of the early users with maximal path lengthFig. 9. The parallel selection function parPar is shown in �gure 9. As we present it, this heuristic is quite speci�c for thewriteback problem, but it can be adapted to other situations easily. Just change theinstruction class heuristic appropriately.How well does par do on the (sequential) SAXPY loop? The �rst instructionchosen is again the �rst ld. The instruction class heuristic then selects the addu andsaves the second ld for the third cycle to avoid ep's writeback collision. Then thescheduler is faced with integer instructions and the fmul. Since the instruction classheuristic has higher precedence than path length, an integer instruction is chosen(to save the fmul for the next cycle, when an integer instruction would cause awriteback collision with the second ld). Par's schedule (see �gure 10) is as bad asep's, which demonstrates the need to switch to seq when scheduling sequential code.5 ResultsWe implemented these ideas in a prototype scheduler for the Motorola 88100. Forsimplicity it schedules the assembly language output of compilers (also known aspostpass strategy) and it does not perform alias analysis, i.e. all memory referencesare treated as possibly equal.To determine the e�ciency of our heuristics we scheduled four benchmarksand compared the results with the optimal schedules produced by the scheduler



@L5:ld r12,r14[r5] ;r12=x(ix)addu r9,r9,1 ;i=i+1ld r11,r3[r6] ;r11=y(iy)cmp r10,r9,r8 ;i<=n?fmul.sss r12,r2,r12 ;r12=a*r12addu r5,r5,r4 ;ix=ix+incxfadd.sss r12,r12,r11 ;r12=r12+r11st r12,r3[r6] ;y(iy)=r12bb1.n le,r10,@L5 ;doaddu r6,r6,r7 ;iy=iy+incyFig. 10. SAXPY loop scheduled using parin [EK91]. The benchmark programs are: an abstract Prolog machine interpreter(VAM), the dhrystone synthetic integer benchmark (dhry), a fast Fourier transfor-mation routine (�t), and the SAXPY loop with a bit of sca�olding (SAXPY). Thesebenchmarks were compiled with the Harris C compiler, which already includes aninstruction scheduler and therefore provides a good baseline for comparison.We tested the following heuristics: EET, break ties with path length (ep); oursequential selection function (seq), our parallel selection function (par); and switchingbetween seq and par (seq par). opt denotes the optimal schedule and orig the originalHarris-scheduled code.Prog. orig ep seq par seq par opt global%SAXPY 44/0% 45/-50% 42/100% 43/ 50% 42/100% 42/100% 4.8%�t 641/0% 641/ 0% 641/ 0% 640/100% 640/100% 640/100% 0.2%dhry 519/0% 520/-13% 514/ 63% 518/ 13% 514/ 63% 511/100% 1.0%VAM 8335/0% 8328/ 4% 8273/ 39% 8283/ 33% 8239/ 60% 8174/100% 1.2%
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seq/parFig. 12. Performance at varying parallelism thresholdsFigure 11 shows static measurements of the benchmarks (cumulated executiontimes of all basic blocks) in tabular and graphic form. The last column shows theimprovement of seq par relative to the total (static) cycles. Figure 12 shows thebehaviour of various switching combinations of seq, par and ep at various switchingthresholds.Both seq and par are nearly always as good as or better than ep, even at theirweak points (parallel and sequential code respectively). Since a postpass strategy canexploit less parallelism, we expect par to perform even better in a prepass strategy.Both of them are better than the other at their respective strong points, so seq parcombines them nicely to remove between 60% and 100% of the avoidable stalls inthe original code. This corresponds to an absolute gain of up to 5%. Execution timemeasurement of a few programs also show an improvement of 1%{5%.The measurements of the scheduling time have to be taken with a grain of salt,since we did not build the scheduler for e�ciency. Replacing ep with seq par increasesscheduling time by 6%. Since scheduling takes only a small amount of compile time,we consider seq par to be cost-e�ective.6 Further workThe ideas presented here should be integrated into a code generation system likeMarion. The most di�cult problem is �nding a nice way to generate or specify theinstruction class heuristic of par in a general way.If some instructions (like divide instructions) occupy a stage for a long time (fora typical basic block length or longer), it may be useful to preschedule them byadding edges to the dependence graph between these instructions and others usingthe same stage.



Currently the parallelism-dependent behaviour is controlled by parameters forthe whole remaining basic block. In long basic blocks the local parallelism often dif-fers from the value parallelism. Therefore parameters that reect the local situationare useful.The parallel/sequential distinction can be used for integrating register allocationand instruction scheduling: In parallel code it is cheap to schedule for register al-location, whereas in sequential code spilling registers is cheap: The spill code �llsdelay slots.7 ConclusionWe have described heuristics for dealing with structural hazards in a list schedulingframework. The heuristic selection function seq is designed for scheduling code withlow instruction-level parallelism. It gives absolute priority to the instruction with thelongest path length to the end of the basic block. Other instructions are scheduledearlier only if they do not interfere. The heuristic par is designed for schedulingparallel code. It uses an instruction class selection heuristic (as secondary heuristic)to avoid structural hazards. Our scheduler switches between these two heuristics foreach new instruction to schedule depending on the parallelism of the remaining basicblock. This technique removes 60%{100% of the removable stalls or up to 5% of thecycles from already conventionally scheduled code.AcknowledgementsWe wish to acknowledge the e�orts of several others who contributed to the work inthis paper. The anonymous referees, Paul Beusterien, Manfred Brockhaus, AndreasFalkner, Horst Hogenkamp, Christoph Ke�ler and Ulrich Neumerkel commented onearlier versions; Paul Beusterien of Harris compiled our benchmarks with the Harriscompiler; Martin Laubach supplied the fast fourier transformation routine.References[BEH91] David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating register al-location and instruction scheduling for RISCs. In Architectural Support for Pro-gramming Languages and Operating Systems (ASPLOS), pages 122{131, 1991.[BHE91] David G. Bradlee, Robert R. Henry, and Susan J. Eggers. The Marion systemfor retargetable instruction scheduling. In Proceedings of the SIGPLAN '91Conference on Programming Language Design and Implementation, pages 229{240, Toronto, 1991.[BK92] Greg Blanck and Steve Krueger. The SuperSPARC microprocessor. In COMP-CON: Digest of Papers, pages 136{141, 1992.[DA92] Keith Diefendor� and Michael Allen. Organization of the Motorola 88110 su-perscalar RISC microprocessor. IEEE Micro, pages 40{63, April 1992.[EK91] M. Anton Ertl and Andreas Krall. Optimal instruction scheduling using cons-traint logic programming. In Programming Language Implementation and LogicProgramming (PLILP), pages 75{86, Passau, 1991. Springer LNCS 528.
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