
NaCl

Martin Rupp, Klaus Kraßnitzer

25.06.2020



The NaCl Language



The NaCl Language

NaCl...

• ...is a toy programming language

• ...can be executed from a Python-like console

(“Read-Eval-Print-Loop”)

• ...compiles down to the .mltn binary format which is interpreted by

the Reactor Virtual Machine.

1



NaCl Language Features

• Global Execution (small programs, console execution)

• Variables and (static) Types (float, int, bool)

• Control flow (if/else, while)

• Functions (typed or void return)

• Multi-line comments (also nested)

• Built-in functions (currently only print)

2



NaCl Code Example

1 /* calculate the n-th fibonacci number */

2 fib (n: i n t ) -> i n t {

3 i f n < 2 {

4 r e t u r n n;

5 } e l s e {

6 r e t u r n fib(n-1) + fib(n-2);

7 }

8 }

9

10 expected : i n t = 144;

11 actual := fib (12);

12 print(expected , actual );

3



Implementation



NaCl Implementation

• Fully written in Rust (∼4700+400 lines of code)

• Most loved programming language on GitHub

• Fast and Reliable

• Many unique features: borrow checker, no null values, ...

• No external dependencies (hand-written Lexer, Parser, ...)

• One program for language parsing, console and bytecode

compilation (nacl)

• Another (separate) program for bytecode execution (reactor)

4



Error Handling (1)

Inspired by Rust, NaCl features sophisticated error handling for all stages

(Lexer, Parser, Static Check) with error recovery in Parser and Lexer.

Example (Parser Error Handling):

1 f (x:) {

2 r e t u r n x;

3 }

4

5 f(x;

6 x : fl = 3.0;

7 i f x < {

8 print(x);

9 }

5



Error Handling (2)

Parser Error

line 1, col 6: Unexpected token ")", expected:

Type

line 5, col 4: Unexpected token ";", expected:

:, )

line 6, col 5: Unexpected token "Identifier", expected:

Type

line 7, col 9: Unexpected token "{", expected:

Identifier, Boolean Constant, Integer Constant, Float Constant, (

Aborting due to previous parser errors

6



Reactor VM

• Simple, stack-based machine

• Four-Stack Layout:

• Operand Stack

• Local Variable Stack

• Global Variable Stack

• Call Stack

• Variable-size instruction set

• Operator instructions (e.g. FAdd, IMod)

• Variable-related instructions (e.g. StoreL, LoadC)

• Control flow instructions (e.g. JmpU, Exit)

• Function-Related instructions (e.g. CallF, Return)

7



Demo

7



Benchmarks



Benchmarking (1)

Compare performance of NaCl AST-Interpreter and Reactor VM in

simple benchmarks against:

• C, Rust (compiled)

• Java, JavaScript (JIT-Compiled)

• Python, Java, JavaScript (Interpreted)

Benchmarking Conditions:

• Test System with Intel i7 4790k @ 4.6 GHz running Linux

• Programs were benchmarked using perf stat with 50 repetitions

(5 for AST interpreter)

• Running time in nanoseconds logged, average calculated

8



Benchmarking (2)

The following benchmarks were conducted:

Name Benchmark Tested Features

fib 40th Fibonacci-Number recursively Function Calls

fac-rec 20! 1.000.000 times recursively Function Calls

fac-it 20! 1.000.000 times iteratively Loops

pprime 200th palindrome prime number Function Calls, Loops

sin Sine Taylor Approximation Floats, Loops

9



Faculty Iterative Benchmark

Running time (lower is better):

101 102 103 104

node-jit

c

rust

node-jitless

reactor

python

java-jit

java-jitless

nacl-ast

34ms

40ms

59ms

337ms

561ms

625ms

783ms

1.08 s

10.35 s

average running time (ms)

10



Faculty Recursive Benchmark

Running time (lower is better):

101 102 103 104

c

node-jit

node-jitless

java-jit

reactor

python

java-jitless

nacl-ast

49ms

120ms

621ms

807ms

822ms

1.59 s

2.02 s

8.5 s

average running time (ms)

11



Fibonacci Benchmark

Running time (lower is better):

101 102 103 104 105 106

c

rust

node-jit

java-jit

node-jitless

reactor

java-jitless

python

nacl-ast

187ms

343ms

1.03 s

1.16 s

10.1 s

13.58 s

18.08 s

19.7 s

121.89 s

average running time (ms)

12



Sine Approximation Benchmark

Running time (lower is better):

101 102 103 104 105

c

rust

node-jit

java-jit

node-jitless

java-jitless

reactor

python

nacl-ast

61ms

65ms

78ms

795ms

899ms

1.45 s

1.49 s

2.45 s

26.66 s

average running time (ms)

13



Palindrome Prime Benchmark

Running time (lower is better):

101 102 103 104 105

c

node-jit

rust

java-jit

node-jitless

java-jitless

reactor

python

nacl-ast

117ms

324ms

368ms

948ms

1.75 s

2.18 s

2.87 s

3.54 s

33.77 s

average running time (ms)

14



Conclusion

In our benchmarks, we observed - as expected - a huge performance

improvement of the Reactor VM over the AST interpreter.

Reactor is comparable in performance to common interpreted

languages such as Python, JavaScript and (interpreted) Java.

In our tests, Reactor is on average 1:

• 42 % faster than Python

• 24 % faster than interpreted Java (java -Xint)

• 53 % slower than interpreted JavaScript (node --jitless)

• 29 times slower than C

1average relative performance over all benchmarks

15



Thank you for your attention!

Questions?

Find the repositories (nacl, reactor, nacl-bechmark) on GitLab:

gitlab.com/nacl-lang

16

https://gitlab.com/nacl-lang/


Backup Slides



Challenge: Global variable scoping and functions

1 f () {

2 a = a + 1;

3 }

4

5 a := 0;

6 f();

7 print(a);

8

9 i f true {

10 a := 3;

11 f();

12 print(a);

13 }

14

15 print(a);

• Intended Behavior:

• line 7 should print ‘1’

• line 12 should print ‘4’

• line 15 should print ‘1’ again

• Variable a is shadowed in the if

statement and has therefore different

global ids in the two print calls

• Solution: Keep track of function

“dependencies” and accessed global

variables, compile on function call

depending on current global variable

ids

17



Possible Future Work

• Expand instruction set (e.g. improve loop performance with

Increment instruction or fast-track variable assignment)

• Make a register-based machine and compare performance to

Reactor

• Expand Reactor with a JIT-Compiler

18



Thank you for your attention!

Questions?

Find the repositories (nacl, reactor, nacl-bechmark) on GitLab:

gitlab.com/nacl-lang

19

https://gitlab.com/nacl-lang/

	The NaCl Language
	Implementation
	Benchmarks
	Backup Slides

