
© 2006 IBM Corporation

Dynamic Compilation and Adaptive Optimization
in Virtual Machines

Instructor: Michael Hind

Material contributed by:
Matthew Arnold, Stephen Fink, David Grove, and Michael Hind

2

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Who am I?
Helped build Jikes RVM (1998-2006)

– GC Maps, live analysis, dominators, register allocation refactoring
– Adaptive optimization system
– Management, project promotion, education, etc.

Work for IBM, home of 2 other Java VMs
– IBM DK for Java, J9

In previous lives, worked on
– Automatic parallelization (PTran)
– Ada implementation (Phd Thesis)
– Interprocedural ptr analysis
– Professor for 6 years

Excited to share what I know
– And learn what I don’t!

3

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Goals

Understand the optimization technology used in production
virtual machines

Provide historical context of dynamic/adaptive optimization
technology

Debunk common misconceptions

Suggest avenues of future research

4

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

5

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline
1. Background

Why software optimization matters
Myths, terminology, and historical context
How programs are executed

2. Engineering a JIT Compiler
What is a JIT compiler?
Case studies: Jikes RVM, IBM DK for Java, HotSpot
High level language-specific optimizations
VM/JIT interactions

3. Adaptive Optimization
Selective optimization
Design: profiling and recompilation
Case studies: Jikes RVM and IBM DK for Java
Understanding system behavior
Other issues

4. Feedback-Directed and Speculative Optimizations
Gathering profile information
Exploiting profile information in a JIT

Feedback-directed optimizations
Aggressive speculation and invalidation

Exploiting profile information in a VM
5. Summing Up and Looking Forward

Debunking myths
The three waves of adaptive optimization
Future directions

6

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline - Summary

1. Background
Why software optimization matters
Myths, terminology, and historical context
How programs are executed

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

7

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Developing Sophisticated Software

Software development is difficult

PL & SE innovations, such as
– Dynamic memory allocation, object-oriented

programming, strong typing, components,
frameworks, design patterns, aspects, etc.

Resulting in modern languages with many benefits
– Better abstractions
– Reduced programmer efforts
– Better (static and dynamic) error detection
– Significant reuse of libraries

Have helped enable the creation of large, sophisticated
applications

AOP, Perl, J2EE, etc.Productivity Binary
AssemblyC

C++

Java

2000’s1940’s

8

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

The Catch
Implementing these features pose performance challenges

– Dynamic memory allocation
– Need pointer knowledge to avoid

conservative dependences
– Object-oriented programming

– Need efficient virtual dispatch,
overcome small methods,
extra indirection

– Automatic memory management
– Need efficient allocation and
garbage collection algorithms

– Runtime bindings
– Need to deal with unknown

information
– . . .

Productivity
Binary

Assembler

C

C++

Java

AOP, Perl, J2EE, etc.

Performance
Challenge

2000’s1940’s

Features require a rich runtime environment virtual machine

9

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Type Safe, OO, VM-implemented Languages Are Mainstream

Java is ubiquitous
– eg. Hundreds of IBM products are written in Java

“Very dynamic” languages are widespread and run on a VM
– eg. Perl, Python, PHP, etc.

These languages are not just for traditional applications
– Virtual Machine implementation, eg. Jikes RVM
– Operating Systems, eg. Singularity
– Real-time and embedded systems, eg. Metronome-enabled systems
– Massively parallel systems, eg. DARPA-supported efforts at IBM, Sun,

and Cray

Virtualization is everywhere
– browsers, databases, O/S, binary translators, VMMs, in hardware, etc.

10

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Have We Answered the Performance Challenges?

So far, so good …
– Today’s typical application on today’s hardware runs as fast as

1970s typical application on 1970s typical hardware
– Features expand to consume available resources…
– eg. Current IDEs perform compilation on every save

Where has the performance come from?
1. Processor technology, clock rates (X%)
2. Architecture design (Y%)
3. Software implementation (Z%)
X + Y + Z = 100%

• HW assignment: determine X, Y, and Z

11

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Future Trends - Software
Software development is still difficult

– PL/SE innovation will continue to occur
– Trend toward more late binding, resulting in dynamic requirements
– Will pose further performance challenges

Real software is now built by piecing components together
– Components themselves are becoming more complex, general purpose
– Software built with them is more complex

– Application server (J2EE Websphere, etc), application
framework, standard libraries, non-standard libraries (XML, etc),
application

– Performance is often terrible
– J2EE benchmark creates 10 business objects (w/ 6 fields) from

a SOAP message [Mitchell et al., ECOOP’06]
> 10,000 calls
> 1,400 objects created

– Traditional compiler optimization wouldn’t help much
– Optimization at a higher semantic level could be highly profitable

12

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Future Trends – Hardware

Processor speed advances not as great as in the past (x << X?)

Computer architects providing multicore machines
– Will require software to utilize these resources
– Not clear if it will contribute more than in the past (y ? Y)

Thus, one of the following will happen
– Overall performance will decline
– Increase in software sophistication will slow
– Software implementation will pick up the slack (z > Z)

13

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Future Trends – Hardware

Processor speed advances not as great as in the past (x << X?)

Computer architects providing multicore machines
– Will require software to utilize these resources
– Not clear if it will contribute more than in the past (y ? Y)

Thus, one of the following will happen
– Overall performance will decline
– Software complexity growth will slow
– Software implementation will pick up the slack (z > Z)

14

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background
Why software optimization matters
Myths, terminology, and historical context
How programs are executed

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

15

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Well-Known “Facts”

1. Because they execute at runtime, dynamic compilers must be blazingly fast

2. Dynamic class loading is a fundamental roadblock to cross-method
optimization

3. Sophisticated profiling is too expensive to perform online

4. A static compiler will always produce better code than a dynamic compiler

5. Infrastructure requirements stifle innovation in this field

6. Production VMs avoid complex optimizations, favoring stability over
performance

16

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Terminology

Virtual Machine (for this talk): a software execution engine for a
program written in a machine-independent language

– Ex., Java bytecodes, CLI, Pascal p-code, Smalltalk v-code

Program
Loader

Thread
Scheduler

Security
Services

LibrariesMemory
Management

Runtime
Support

Mechanisms

Dynamic type checking
Introspection, etc.

Tracing,
Profiling, etc.
(ex. JVMPI)

Interpreter Compiler(s) Adaptive Optimization System

VM != JIT

17

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Adaptive Optimization Hall of Fame

1958-1962

1974

1980-1984

1986-1994

1995-present

18

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Adaptive Optimization Hall of Fame

1958-1962: LISP

1974: Adaptive Fortran

1980-1984: ParcPlace Smalltalk

1986-1994: Self

1995-present: Java

19

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Quick History of VMs

LISP Interpreters [McCarthy’78]
– First widely used VM
– Pioneered VM services

– memory management
– Eval -> dynamic loading

Adaptive Fortran [Hansen’74]
– First in-depth exploration of adaptive optimization
– Selective optimization, models, multiple optimization levels, online

profiling and control systems

20

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Quick History of VMs
ParcPlace Smalltalk [Deutsch&Schiffman’84]

– First modern VM
– Introduced full-fledge JIT compiler, inline caches, native code caches
– Demonstrated software-only VMs were viable

Self [Chambers&Ungar’91, Hölzle&Ungar’94]
– Developed many advanced VM techniques
– Introduced polymorphic inline caches, on-stack replacement, dynamic de-

optimization, advanced selective optimization, type prediction and
splitting, profile-directed inlining integrated with adaptive recompilation

Java/JVM [Gosling et al. ‘96]
– First VM with mainstream market penetration
– Java vendors embraced and improved Smalltalk and Self technology
– Encouraged VM adoption by others -> CLR

21

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Featured VMs in this Talk
Self [‘86-’94]

– Self is a pure OO language
– Supports an interactive development environment
– Much of the technology was transferred to Sun’s HotSpot JVM

IBM DK for Java [’95-’06]
– Port of Sun Classic JVM + JIT + GC and synch enhancements
– Compliant JVM
– World class performance

Jikes RVM (Jalapeño) [’97-]
– VM for Java, written in (mostly) Java
– Independently developed VM + GNU Classpath libs
– Open source, popular with researchers, not a compliant JVM

22

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background
Why software optimization matters
Myths, terminology, and historical context
How programs are executed

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

23

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

How are Programs Executed?

1. Interpretation
– Low startup overhead, but much slower than native code execution

– Popular approach for high-level languages
– Ex., APL, SNOBOL, BCPL, Perl, Python, MATLAB

– Useful for memory-challenged environments

2. Classic just-in-time compilation
– Compile each method to native code on first invocation

– Ex., ParcPlace Smalltalk-80, Self-91
– Initial high (time & space) overhead for each compilation
– Precludes use of sophisticated optimizations (eg. SSA, etc.)

Responsible for many of today’s misconceptions

24

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Interpretation vs. (Dynamic) Compilation
Example: 500 methods
Assume: Compiler gives 4x speedup, but has 20x overhead

0
20
40
60
80

100
120

Intepreter Compiler

Ti
m

e

Initial Overhead Execution

0
500

1000
1500
2000
2500

Intepreter Compiler
Ti

m
e

Initial Overhead Execution

Execution: 20 time units Execution: 2000 time unitsShort running: Interpreter is best Long running: compilation is best

25

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Selective Optimization

Hypothesis: most execution is spent in a small pct. of methods
– 90/10 (or 80/20) rule

Idea: use two execution strategies
1. Unoptimized: interpreter or non-optimizing compiler
2. Optimized: Full-fledged optimizing compiler

• Strategy
– Use unoptimized execution initially for all methods
– Profile application to find “hot” subset of methods

– Optimize this subset
– Often many times

26

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler
What is a JIT compiler?
Case studies: Jikes RVM, IBM DK for Java, HotSpot
High level language-specific optimizations
VM/JIT interactions

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

27

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

What is a JIT Compiler?

Code generation component of a virtual machine

Compiles bytecodes to in-memory binary machine code
– Simpler front-end and back-end than traditional compiler

– Not responsible for source-language error reporting
– Doesn’t have to generate object files or relocatable code

Compilation is interspersed with program execution
– Compilation time and space consumption are very important

Compile program incrementally; unit of compilation is a method
– JIT may never see the entire program
– Must modify traditional notions of IPA (Interprocedural Analysis)

28

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Design Requirements

High performance (of executing application)
– Generate “reasonable” code at “reasonable” compile time costs
– Selective optimization enables multiple design points

Deployed on production servers RAS
– Reliability, Availability, Serviceability
– Facilities for logging and replaying compilation activity

Tension between high performance and RAS requirements
– Especially in the presence of (sampling-based) feedback-directed opts
– So far, a bias to performance at the expense of RAS, but that is changing

as VM technology matures
– Ogato et al., OOPSLA’06 discuss this issue

29

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Structure of a JIT Compiler

bytecode

Common
Optimizer

Machine
Dependent

Machine
Dependent

IA32 binary PPC/32 binary

Front-end

30

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline - Summary

1. Background

2. Engineering a JIT Compiler
What is a JIT compiler?
Case studies: Jikes RVM, IBM DK for Java, HotSpot
High level language-specific optimizations
VM/JIT interactions

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

31

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Case Study 1: Jikes RVM [Fink et al., OOPSLA’02 tutorial]

Java bytecodes IA32, PPC/32

3 levels of Intermediate Representation (IR)
– Register-based; CFG of extended basic blocks
– HIR: operators similar to Java bytecode
– LIR: expands complex operators, exposes runtime system implementation

details (object model, memory management)
– MIR: target-specific, very close to target instruction set

Multiple optimization levels
– Suite of classical optimizations and some Java-specific optimizations
– Optimizer preserves and exploits Java static types all the way through MIR
– Many optimizations are guided by profile-derived branch probabilities

32

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Jikes RVM Opt Level 0

On-the-fly (bytecode IR)
– constant, type and non-null propagation, constant folding, branch

optimizations, field analysis, unreachable code elimination
BURS-based instruction selection
Linear scan register allocation

Inline trivial methods (methods smaller than a calling sequence)
Local redundancy elimination (CSE, loads, exception checks)
Local copy and constant propagation; constant folding
Simple control flow optimizations

– Static splitting, tail recursion elimination, peephole branch opts
Simple code reordering
Scalar replacement of aggregates & short arrays
One pass of global, flow-insensitive copy and constant
propagation and dead assignment elimination

33

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Jikes RVM Opt Level 1

Much more aggressive inlining
– Larger space thresholds, profile-directed
– Speculative CHA (recover via preexistence and OSR)

Runs multiple passes of many level 0 optimizations
More sophisticated code reordering algorithm [Pettis&Hansen]

Over time many optimizations shifted from level 1 to level 0
Aggressive inlining is currently the primary difference between
level 0 and level 1

34

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Jikes RVM Opt Level 2

Loop normalization, peeling & unrolling

Scalar SSA
– Constant & type propagation
– Global value numbers
– Global CSE
– Redundant conditional branch elimination

Heap Array SSA
– Load/store elimination
– Global code placement (PRE/LICM)

35

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Case Study 2: IBM DK [Ishizaki et al. ’03]

Java bytecodes IA32, IA64, PPC/32, PPC/64, S/390

3 Intermediate representations
– Extended bytecodes (compact, but can’t express all transforms)
– Quadruples (register-based IR)
– DAG (quadruples + explicit representation of all dependencies)

Multiple optimization levels

Many optimizations use profile information

36

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Optimizations on Extended Bytecodes

Java bytecodes + type information
– Compact representation
– Can’t express some transformations

Flow-sensitive type inference (devirtualization)

Method inlining, includes guarded inlining based on CHA

Nullcheck and array bounds check elimination

Flow-sensitive type inference (checkcast/instanceof)

37

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Optimizations on Quadruples

Quadruples
– Register-based; CFG of extended basic blocks
– Close to native instruction set; some pseudo-operators (e.g. new)

Copy and constant propagation, dead code elimination
Frequency-directed splitting
Escape analysis & scalar replacement
Exception check optimization (partial-PRE)
Type inference (instanceof/checkcast)

38

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Optimizations on DAG of QUADs

DAG: augment QUADs with explicit dependency edges

SSA-form: loop versioning, induction variable optimizations
Pre-pass instruction scheduling
Instruction selection
Sign extension elimination
Code reordering (move infrequent blocks to end)
Register allocation

– Special-purpose for IA32
– Linear scan other platforms
– Considering graph coloring

Post-pass instruction scheduling

39

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Effectiveness of Optimizations in IBM DK [Ishizaki, et al. OOPSLA’03]

Generally effective and cheap
– Method inlining for tiny methods
– Exception check elimination via forward dataflow
– Scalar replacement via forward dataflow

Sometimes effective and cheap
– Exception check elimination via PRE
– Elimination of redundant instanceof/checkcast
– Splitting

Occasionally effective, but expensive
– Method inlining of larger methods via static heuristics
– Scalar replacement via escape analysis
– All of their DAG optimizations

40

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Case Study 3: HotSpot Server JIT [Paleczny et al. ’01]

HotSpot Server compiler
– Client compiler is simpler; small set of opts but faster compile time

Java bytecodes SPARC, IA32

Extensive use of On Stack Replacement
– Supports a variety of speculative optimizations (more later)
– Integral part of JIT’s design

Of the 3 systems, the most like an advanced static optimizer
– SSA-form and heavy optimization
– Design assumes selective optimization (“HotSpot”)

41

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

HotSpot Server JIT

Virtually all optimizations done on SSA-based sea-of-nodes
– Global value numbering, sparse conditional constant propagation,
– Fast/Slow path separation
– Instruction selection
– Global code motion [Click ’95]

Graph coloring register allocation with live range splitting
– Approx 50% of compile time (but much more than just allocation)
– Out-of-SSA transformation, GC maps, OSR support, etc.

42

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler
What is a JIT compiler?
Case studies: Jikes RVM, IBM DK for Java, HotSpot
High level language-specific optimizations
VM/JIT interactions

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

43

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

High level language-specific optimizations

Not a consequence of JIT compilation, but of source language

Effective optimization of object-oriented language features is
essential for high performance

Optimizations
– Type analysis: virtual function calls and typechecks
– Escape analysis, scalar replacement, etc.
– Support for precise exceptions

44

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Optimizing Virtual Function Calls

Effective inlining is the most important optimization in a JIT
– Many small methods
– Many virtual function calls (target not directly evident)

Iterative Type Analysis [Chambers&Ungar’90]
– Compute for every variable a conservative approximation of the

runtime types (concrete types) of values stored in that variable
– Gains information from new, checkcast, virtual call, …
– Enables devirtualization (and then inlining)
– Also can be used to eliminate redundant checkcast/instanceof

Type analysis is useful, but often not sufficient

45

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Speculatively Optimizing Virtual Function Calls

Class Hierarchy Analysis [Dean et al. ’95]
– constrained by potential for dynamic class loading
– guard with class/method test or code patch
– avoid guards with preexistence or OSR

Profile-guided
– guard with class/method test

More details later…

46

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Optimization of Heap Allocated Objects

“Good” OO programming heavy use of heap allocated objects

Optimizations
– Reduce direct cost of allocating objects

– Inline allocation sequence, thread-local allocation pools
– Stack allocation & scalar replacement of non-escaping objects

– Support advanced GC algorithms (write barriers for generational)
– Deeper analysis of load/stores to the heap

– Eliminate redundant load/stores
– Extend other analyses to cope with dataflow through instance

variables

47

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Scalar Replacement
Completely replace all references to an object
Enabled by escape analysis and/or dataflow

class A {
int x;
int y;

}
void foo() {

A a = new A();
a.x = 1;
a.y = a.x + 2;
System.out.println(a.y);

}

void foo() {
int t1 = 1;
int t2 = t1 + 2;
System.out.println(t2);

}

48

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Redundant Load Elimination

Original Program Transformed Program

p := new Z
q := new Z
r := p
. . .
T1 := ...
p.x := T1
q.x := ...
... := T1

p := new Z
q := new Z
r := p
. . .
p.x := ...

q.x := ...
... := r.x

49

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Optimizing with Precise Exceptions

Language semantics require precise exception handling
– Constrains optimizations by limiting legal reorderings of operations

and may extend the lifetime of variables
– Optimizations must be taught to respect these constraints

– Principled: IR represents all constraints of exception model
– Kludge: Special logic in every impacted optimization
– Reality: combination of the two approaches

Optimizations to reduce performance impact
– Eliminate redundant exception checks
– Hoist invariant checks; PRE of checks
– Loop peeling and loop versioning to create fast loops for the

expected case

50

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler
What is a JIT compiler?
Case studies: Jikes RVM, IBM DK for Java, HotSpot
High level language-specific optimizations
VM/JIT interactions

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

51

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

JIT/VM Interactions

Runtime services often require JIT support
– Memory management
– Exception delivery and symbolic debugging

JITed code requires extensive runtime support
– Runtime services such as type checking, allocation
– Common to use hardware traps & signal handlers
– Helper routines for uncommon cases (dynamic linking)

Collaboration enables optimization opportunities
– Inline common case of allocation, type checks, etc.
– Co-design of VM & JIT essential for high performance

52

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

JIT Support for Memory Management

GC Maps
– Required for type-accurate GC to identify roots for collection
– Generated by JIT for every program point where a GC may occur
– Encodes which physical registers and stack locations hold objects
– Can constrain optimizations (derived pointers)

Write barriers for generational collection
– Requires JIT cooperation (barriers inserted in generated code)
– Common case of barriers is usually inlined
– Variety of barrier implementations with different trade-offs

Cooperative scheduling
– In many VMs, all mutator threads must be stopped at GC points.
– One solution requires JITs to inject GC yieldpoints at regular

intervals in the generated code

53

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

JIT Support for Other Runtime Services

Exception tables
– Encode try/catch structure in terms of generated machine code.
– Typical implementation in JVM consists of compact meta-data

generated by the JIT and used when an exception occurs
– no runtime cost when there is no exception

Mapping from machine code to original bytecodes
– Primary usage is for source level debugging, but if the mapping

exists it can be used to support a variety of other runtime services
– One complication is the encoding of inlining structure to present

view of virtual call stack

54

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Runtime Support for JIT Generated Code

Memory allocation
– Occurs frequently, therefore JIT usually inlines common case
– Details of GC implementation often “leak” into the JIT making GC

harder to maintain and change (some exceptions: Jikes RVM; LIL
[Glew et al. VM’04])

Null pointer checks; array bounds check
– Implemented via SIGSEGV and/or trap instructions
– Runtime installs signal handlers to handle traps and create/throw

appropriate language level exception

JIT generated code relies on extensive set of runtime helper routines
– “Outline” infrequent operations and uncommon cases of frequent

operations
– Very common place for JIT details to “leak” into the runtime

system and vice versa.
– Often use specialized calling conventions for either fast invocation

or reduced code space

55

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Advantages of JIT/VM Interdependency

Co-design of JIT/VM can have large performance implications

VM data structures optimized to enable JIT to generate
effective inline code sequences for common cases.

Example: support for dynamic type checking in JVMs
– Jikes RVM [Alpern et al.’01] and HotSpot [Click&Rose’02]
– Similar ideas, HotSpot extends and improves on Jikes RVM

– exploit compile-time knowledge to customize dynamic type
checking code sequence

– co-design of VM data structures & inline opt code

56

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Disadvantages of JIT/VM Interdependency

Leakage of implementation details
– JIT implementation dependent on details VM and vice versa
– Often performance critical code, so complete abstraction is not

always possible

Maintain JIT/VM interface
– Interface is often fairly wide and not explicitly specified
– Changes require coordination and careful planning

– JIT and VM often owned by different development teams

Hard to build a JIT that can be plugged into multiple VMs
– Can be done, but requires discipline and careful design

57

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization
Selective Optimization
Design: profiling and recompilation
Case studies: Jikes RVM and IBM DK for Java
Understanding system behavior
Other issues

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

58

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Selective Optimization

Hypothesis: most execution is spent in a small pct. of methods
– 90/10 (or 80/20) rule

Idea: use two execution strategies
1. Unoptimized: interpreter or non-optimizing compiler
2. Optimized: Full-fledged optimizing compiler

• Strategy
– Use unoptimized execution initially for all methods
– Profile application to find “hot” subset of methods

– Optimize this subset
– Often many times

59

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Selective Optimization Examples

Adaptive Fortran: interpreter + 2 compilers

Self’93: non-optimizing + optimizing compilers

JVMs
– Interpreter + compilers: Sun’s HotSpot, IBM DK for Java, IBM’s J9
– Multiple compilers: Jikes RVM, Intel’s Judo/ORP, BEA’s JRockit

CLR
– only 1 runtime compiler, i.e., a classic JIT

– But, also use ahead-of-time (AOT) compilation (NGEN)

60

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Selective Optimization Effectiveness:
Jikes RVM, [Arnold et al.,TR Nov’04]

Startup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

JIT 0 JIT 1 JIT 2

S
pe

ed
up

Steady State

0.0

0.5

1.0
1.5

2.0

2.5

3.0

JIT 0 JIT 1 JIT 2

S
pe

ed
up

Geometric mean of 12 benchmarks
run with 2 different size inputs

(SPECjvm98, SPECjbb2000, etc.)

Geometric mean of 9 benchmarks
Best of 20 iterations, default/big inputs

(SPECjvm98, SPECjbb2000, ipsixql)

61

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Selective Optimization Effectiveness:
Jikes RVM, [Arnold et al.,TR Nov’04]

Steady State

0.0
0.5
1.0
1.5
2.0
2.5
3.0

JIT
 0

JIT
 1

JIT
 2

Sele
cti

ve

Sp
ee

du
p

Startup

0.0
0.5
1.0
1.5
2.0
2.5
3.0

JIT
 0

JIT
 1

JIT
 2

Sele
cti

ve

Sp
ee

du
p

Geometric mean of 12 benchmarks
run with 2 different size inputs

(SPECjvm98, SPECjbb2000, etc.)

Geometric mean of 9 benchmarks
Best of 20 iterations, default/big inputs

(SPECjvm98, SPECjbb2000, ipsixql)

62

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Designing an Adaptive Optimization System

What is the system architecture for implementing selective
optimization?

What is the mechanism (profiling) and policy for driving
recompilation?

How effective are existing systems?

63

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization
Selective optimization
Design: profiling and recompilation
Case studies: Jikes RVM and IBM DK for Java
Understanding system behavior
Other issues

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

64

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Profiling: How to Find Candidates for Optimization

Counters

Call Stack Sampling

Combinations

65

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

How to Find Candidates for Optimization: Counters

Insert method-specific counter on method entry and loop back edge
Counts how often a method is called

– approximates how much time is spent in a method
Very popular approach: Self, HotSpot
Issues: overhead for incrementing counter can be significant

– Not present in optimized code

foo (…) {
fooCounter++;
if (fooCounter > Threshold) {

recompile(…);
}
. . .

}

66

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

How to Find Candidates for Optimization: Call Stack Sampling

Periodically record which method(s) are on the call stack
Approximates amount of time spent in each method
Does not necessarily need to be compiled into the code

– Ex. Jikes RVM, JRocket
Issues: timer-based sampling is not deterministic

A
B

A
B

A
B
C

A A
B
C

A
B
C

... ...

67

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

How to Find Candidates for Optimization: Call Stack Sampling

Periodically record which method(s) are on the call stack
Approximates amount of time spent in each method
Does not necessarily need to be compiled into the code

– Ex. Jikes RVM, JRocket
Issues: timer-based sampling is not deterministic

A
B

A
B

A
B
C

A A
B
C

A
B
C

... ...

Sample

68

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

How to Find Candidates for Optimization

Combinations
– Use counters initially and sampling later on
– Ex) IBM DK for Java, J9

foo (…) {
fooCounter++;
if (fooCounter > Threshold) {

recompile(…);
}
. . .

}

A
B
C

69

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Recompilation Policies: Which Candidates to Optimize?
Problem: given optimization candidates, which ones should be optimized?

Counters
1. Optimize method that surpasses threshold

– Simple, but hard to tune, doesn’t consider context
2. Optimize method on the call stack based on inlining policies (Self,

HotSpot)
– Addresses context issue

Call Stack Sampling
1. Optimize all methods that are sampled

− Simple, but doesn’t consider frequency of sampled methods
2. Use Cost/benefit model (Jikes RVM)

– Seemingly complicated, but easy to engineer
– Maintenance free
– Naturally supports multiple optimization levels

70

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization
Selective optimization
Design: profiling and recompilation
Case studies: Jikes RVM and IBM DK for Java
Understanding system behavior
Other issues

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

71

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Case Studies

Jikes RVM [Arnold et al. ’00]

IBM DK for Java [Suganuma et al. ’01, ‘05]

72

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Case Study 1: Jikes RVM Architecture [Arnold et al. ’00]

Install New Code

A O S
D a ta b a s e

C o m p ila tio n Q u e u e
 E ve n t Q u e u e

C o n tro lle r

O P T C o m p ile r

C o m p ila tio n
T h re a d

E xe cu tin g
C o d e

H o t M e th o d
O rg a n ize r

M e th o d
S a m p le s

T ake S am p le

R un t im e M e a sure m e nts

A O S

R e co m p ila t io n S ub syste m

Samples occur at taken yield points (approx 100/sec)
Organizer thread communicates sampled methods to controller

73

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Jikes RVM: Recompilation Policy – Cost/Benefit Model

Define
– cur, current opt level for method m
– Exe(j), expected future execution time at level j
– Comp(j), compilation cost at opt level j

Choose j > cur that minimizes Exe(j) + Comp(j)

If Exe(j) + Comp(j) < Exe(cur) recompile at level j

Assumptions
– Sample data determines how long a method has executed
– Method will execute as much in the future as it has in the past
– Compilation cost and speedup are offline averages

74

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Short-running Programs: Jikes RVM

0

1

2

3

4

5

db
/1

0
ja

ck
/1

0
ip

si
xq

l/
sh

or
t

je
ss

/1
0

jb
b/

12
00

0
m

tr
t/

10
ja

va
c1

0
xe

rc
es

/s
ho

rt
m

pe
g/

10
co

m
pr

es
s/

10
da

ik
on

/s
ho

rt
so

ot
/s

ho
rt

ja
ck

/1
00

xe
rc

es
/l

on
g

ja
va

c/
10

0
je

ss
/1

00
m

rt
r/

10
0

db
/1

00
ip

si
xq

l/
lo

ng
so

ot
/l

on
g

jb
b/

20
00

00
co

m
pr

es
/1

00
m

pe
g/

10
0

da

ik
on

/l
on

g

G
eo

m

S
pe

ed
up

 o
ve

r
Ba

se
lin

e

JIT 0 JIT 1 JIT 2

No FDO, Mar’04, AIX/PPC

75

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Short-running Programs: Jikes RVM

0

1

2

3

4

5

db
/1

0
ja

ck
/1

0
ip

si
xq

l/
sh

or
t

je
ss

/1
0

jb
b/

12
00

0
m

tr
t/

10
ja

va
c1

0
xe

rc
es

/s
ho

rt
m

pe
g/

10
co

m
pr

es
s/

10
da

ik
on

/s
ho

rt
so

ot
/s

ho
rt

ja
ck

/1
00

xe
rc

es
/l

on
g

ja
va

c/
10

0
je

ss
/1

00
m

rt
r/

10
0

db
/1

00
ip

si
xq

l/
lo

ng
so

ot
/l

on
g

jb
b/

20
00

00
co

m
pr

es
/1

00
m

pe
g/

10
0

da

ik
on

/l
on

g

G
eo

m

S
pe

ed
up

 o
ve

r
Ba

se
lin

e

JIT 0 JIT 1 JIT 2 Model

No FDO, Mar’04, AIX/PPC

76

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Steady State: Jikes RVM

0
1
2
3
4
5
6
7

jb
b-

30
0

ip
si

xq
l

co
m

pr
es

s

je
ss db

ja
va

c

m
pe

ga
ud

io

m
tr

t

ja
ck

G
eo

m
ea

n

Sp
ee

du
p

ov
er

 B
as

el
in
e

JIT 0 JIT 1 JIT 2

No FDO, Mar’04, AIX/PPC

77

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Steady State: Jikes RVM, no FDO (Mar ’04)

0
1
2
3
4
5
6
7

jb
b-

30
0

ip
si

xq
l

co
m

pr
es

s

je
ss db

ja
va

c

m
pe

ga
ud

io

m
tr

t

ja
ck

G
eo

m
ea

n

Sp
ee

du
p

ov
er

 B
as

el
in
e

JIT 0 JIT 1 JIT 2 Model

78

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Case Study 2: IBM DK for Java [Suganuma et al. ’01, ‘05]

Execution Levels (excluding Specialization)

MMI (Mixed Mode Interpreter)
–Fast interpreter implemented in
assembler

Quick compilation
–Reduced set of optimizations for
fast compilation, little inlining

Full compilation
–Full optimizations only for selected
hot methods

Methods can progress sequentially
through the levels

 1st Level
Compiled Code

 2nd Level
Compiled Code

Mixed Mode
Interpreter

Hot Method
 Sampling

Dynamic Compiler

Profiling System

Quick Opt
Compiler

 Sampling
Profiler

Full Opt
Compiler

 MMI
Profiler

ByteCode

Invocation Frequency
Loop Iteration

79

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Profile Collection

MMI Profiler (Counter Based)
– Invocation frequency and loop iteration

Sampling Profiler
– Lightweight for operating during the entire execution
– Only monitors compiled methods
– Maintains list of hot methods and calling relationships among hot methods

MMI also collects branch frequencies for FDO

80

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Recompilation Policy

Methods are promoted sequentially through the levels

MMI -> Quick
– Based on loop and invocation counts with special treatment for certain

types of loops

Quick -> Full
– Based on sampling profiler
– Roots of call graphs are recompiled with inlining directives

– Inspired by Self’93

81

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Startup: IBM DK for Java, no Specialization [Suganuma et al. ’01]

SwingSet Java2D ICE Browser HotJava IchitaroArk WebSphere Geo. Mean
0

1

2

3

Re
la

ti
ve

 P
er

fo
rm

an
ce

 t
o

N
o

O
pt

MMI-only quick-only full-only MMI-quick MMI-full

82

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Steady State: IBM DK for Java, no Specialization [Suganuma et al. ’01]

mtrt jess compress db mpegaudio jack javac SPECjbb Geo Mean
0

1

2

3

4

Re
la

ti
ve

 P
er

fo
rm

an
ce

 t
o

N
o

O
pt

MMI-only quick-only full-only MMI-quick MMI-full

83

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

But the world is not always simple
Modern programs execute a large number of methods

SPECjappserver, Mark Stoodley (IBM) MRE’05
–executes > 10,000 methods
–No single “hot spot”

–Hottest method may be <1% of total execution time
–90/10 rule may still apply

–But 10% of 10,000 is 1,000 (warm) methods

Eclipse startup, IBM J9 VM
Number of Methods

Workspace Running
Time Exe. Optimized Highest Level

Empty 5.8 secs 10,499 740 (7.1%) 4 (0.04%)

21 (0.11%)Eclipse
source

18.2 secs 18,960 2,169 (11.4%)

84

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Example: Jikes RVM Compilers on AIX/PPC

Baseline

0
1
2
3
4
5
6
7
8

0 100 200 300 400

Compilation Rate (BC/msec)

Sp
ee

du
p

ov
er

 b
as

el
in

e

Baseline
Quick

Opt 0

Opt 1
Opt 2

Both efficiency and code quality of optimization are relevant
Improving the efficiency of optimization has value
Improving code quality has value

– Even if expensive, can likely be incorporated via selective optimization

85

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization
Selective optimization
Design: profiling and recompilation
Case studies: Jikes RVM and IBM DK for Java
Understanding system behavior
Other issues

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

86

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Understanding System Behavior

Code size usage (IBM DK for Java)

Execution time overhead (Jikes RVM)

Recompilation information
– Pct/total methods recompiled (Jikes RVM)
– Activity over time (Both)

87

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Code Size Comparison, startup: IBM DK for Java

SwingSet Java2D ICE Browser HotJava IchitaroArk WebSphere
0

1

2

Re
la

ti
ve

 C
od

e
Si

ze
 t

o
N

o
O

pt

quick-only full-only MMI-quick MMI-full MMI-all

88

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Code Size Comparison, steady state: IBM DK for Java

mtrt jess compress db mpeg jack javac SPECjbb
0

1

2

3

4

Re
la

ti
ve

 C
od

e
Si

ze
 t

o
N

o
O

pt

quick-only full-only MMI-quick MMI-full MMI-all

89

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Execution Profile: Jikes RVM (Jul ’02)

86.6%

6.2%

0.1%

0.0%

0.0%

0.6%

6.5%

Application Threads
Garbage Collection
Controller
Method organizer
Decay organizer
Inlining organizer
Opt. Recompilation

 Size 100, SPECjvm98, 1 run each

90

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Recomp. Decisions, 20 iterations for each benchmark
Jikes RVM

compress
jess

db
javac

mpegaudio
mtrt

jack

0

10

20

30

40

50

60

70

80

90

100

Pc
t

Ex
ec

ut
ed

 M
et

ho
ds

2->2
B->0->1->2
B->0->2
B->1->2
B->2
B->0->1
B->1
B->0
Base

91

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Recomp. Decisions, 20 iterations for each benchmark
Jikes RVM

compress
jess

db
javac

mpegaudio
mtrt

jack

0

100

200

300

400

500

600

700

800

N
um

 M
et

ho
ds

 R
ec

om
pi

le
d 2->2

B->0->1->2
B->0->2
B->1->2
B->2
B->0->1
B->1
B->0
Base

92

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Recompilation Activity: Jikes RVM (Jul ’02)

0

5

10

15

20

25

N
um

 M
et

ho
ds

 R
ec

om
pi

le
d

Opt 2
Opt 1
Opt 0

compress jess db javac mpegaudio mtrt jack

93

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Recompilation Activity (IBM DK for Java)
m

tr
t

je
ss

co
m

pr
es

s db

m
pe

g

ja
ck

ja
va

c

0

10

20

30

40

50

60

70

80

90

N
um

be
r o

f C
om

pi
le

d
M

et
ho

ds
 (b

ar
ch

ar
t)

0

0.5

1

Ex
ec

ut
io

n
Ti

m
e

R
at

io
 (l

in
e

gr
ap

h)

quick-opt
full-opt

special-opt

94

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization
Selective optimization
Design: profiling and recompilation
Case studies: Jikes RVM and IBM DK for Java
Understanding system behavior
Other issues

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward

95

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Research Issues for Adaptive Optimization (1/2)

Tuning thresholds is a problem
– Threshold values often turn out to be bad later on
– Dealing with combined counter and sample data

Pause times
– Model optimizes throughput, ignores pauses

– After running for an hour, may suggest massive compilations
Synchronous vs. asynchronous recompilation

– Is optimization performed in the background, or is the application
suspended during compilation?

– Exploit idle CPU’s
– Dozens of compilations in parallel (Azul Systems)

Static or dynamic view of profile data
– Is profile data packaged or used in flight during compilation?

96

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Research Issues for Adaptive Optimization (2/2)

Skipping optimization levels
– When to do it?
– Better ways to predict how long method will run?

Handling programs with “flat” profiles
– Use partial method compilation?

Handling code space
– Do we need to budget recompilation?

Responsiveness of installing new compiled code
– Stack rewriting, code patching, etc.

Reliability
– Repeatability
– Counters have advantages, and disadvantages

Can we save information for future runs?
– More details to follow

97

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Learning From a Previous Run

Q: Why throw away everything a VM has learned just because the
program has ended?

A: Several approaches exist

Quicksilver [OOPSLA’00]
– Save the compiled code for a subsequent execution
– Issue: need to deal with security issue, phase changes

Krintz & Calder [PLDI’01, CGO’03]
– Add annotation to classfiles for important methods
– Issue: annotations are independent from online recompilation

strategy
Arnold et al. [OOPSLA’05]

– Details to follow

98

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Arnold, Welc, Rajan [OOPSLA’05]

JVMs apply compilation at runtime
– Better predictions of method running time allows better use of

JIT compiler

Database stores method execution patterns from multiple runs
– Optimization strategies constructed based on these patterns

– Read by JVM at startup, if exists

Average startup improvement
8 – 16% depending on execution scenario

99

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Profile Repository: Histogram of Method Runtimes

For each (hot) method in the program
– Record how much time spent in the method during each program execution
– After each run, update a histogram of run times
– Example: method Foo

– Ran program 100 times
– In 40 program runs, Foo executed for 5 seconds
– In 60 runs, Foo executed for 50 seconds

0
10
20
30
40
50
60
70

0 1 2 5 10 20 30 50 100
seconds

Num
program
runs

Method Foo

100

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Profile Repository: Histogram of Method Runtimes

0
10
20
30
40
50
60
70

0 1 2 5 10 20 30 50 100
seconds

Num
program
runs

Optimize at
low level

Optimize at
high level

101

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations
Gathering profile information
Exploiting profile information in a JIT

Feedback-directed optimizations
Aggressive speculation and invalidation

Exploiting profile information in a VM

5. Summing Up and Looking Forward

102

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Feedback-Directed Optimization (FDO)
Exploit information gathered at runtime to optimize execution

– “selective optimization”: what to optimize
– “FDO” : how to optimize

– Similar to offline profile-guided optimization
– Only requires 1 run!

Advantages of FDO [Smith’00]
– Can exploit dynamic information that cannot be inferred statically
– System can change and revert decisions when conditions change
– Runtime binding has advantages

Performed in many systems
– Eg, Jikes RVM, 10% improvement using FDO

– Using basic block frequencies and call edge profiles

Many opportunities to use profile info during various compiler phases
– Almost any heuristic-based decision can be informed by profile data

– Inlining, code layout, multiversioning, register allocation, global
code motion, exception handling optimizations, loop unrolling,
speculative stack allocation, software prefetching

103

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Issues in Gathering Profile Data

1. What data do you collect?

2. How do you collect it?

3. When do you collect it?

104

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Issue 1: What data do you collect?

What data do you collect?
– Branch outcomes
– parameter values
– loads and stores
– etc.

Overhead issues
– cost to collect, store, and use data

105

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Issue 2: How do you collect the data?
Program instrumentation

– e.g. basic block counters, value profiling

Sampling [Whaley, JavaGrande’00; Arnold&Sweeney TR’00; Arnold&Grove, CGO’05; Zhuang et al. PLDI’06]

– e.g. sample method running, call stack at context switch

Hybrid: [Arnold&Ryder, PLDI’01]

– combine sampling and instrumentation

Runtime service monitors
[Deutsch&Schiffman, POPL’84,Hölzle et al., ECOOP’91; Kawachiya et al., OOPSLA’02; Jones&Lins’96]

– e.g. dispatch tables, synchronization services, GC

Hardware performance monitors: [Ammons et al. PLDI’97; Adl-Tabatabai et al., PLDI’04]

– e.g. drive selective optimization, suggest locality improvements

106

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Issue 3: When do you collect the data?

When do you collect the data?
– During different execution modes (interpreter or JIT)

– e.g. Profile branches during interpetation
– e.g. Add instrumentation during execution of JITed

code

– During different application phases (early, steady state,
etc.)

– Profile during initial execution to use during steady
state execution

– Profile during steady state to predict steady state

Issues: overhead vs accuracy of profile data

107

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Common Approaches in VMs

Most VMs perform profiling during initial execution
(interpretation or initial compiler)

– Easy to implement
– Low-overhead (compared to unoptimized code)
– Typically branch profiles are gathered
– Leads to nontrivial FDO improvements

– 10% for Jikes RVM

Call stack sampling can be used for optimized code
– Low overhead
– Limited profile information

Some VMs also profile optimized methods using instrumentation
– Leverages selective optimization strategy
– Challenge is to keep overhead low (see next 2 slides)

108

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

IBM DK Profiler [Suganuma et al ’01,’02]
Sampling

– Used to identify already compiled methods for re-optimization
Dynamic instrumentation

1. Patch entry to a method with jump to instrumented version
2. Run until threshold

– Time bound
– Desired quantity of data collected

3. Undo patch

sub esp, 50
mov [esp-50], ebx
mov [esp-50], ebx
mov [esp-50], ebx

B’s compiled codeB’s
Instrumented

code
jmp instr_code

109

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Arnold-Ryder [PLDI 01]: Full Duplication Profiling

F u ll -D u p l ic a t io n F r a m e w o r k

D u p l ic a te d C o d eC h e c k in g C o d e

M e th o d E n try

C h e c k s

E n tr y
B a c k e d g e s

C h e c k
P la c e m e n t

No patching; instead generate two copies of a method
•Execute “fast path” most of the time
•Jump to “slow path” occasionally to collect profile
•Demonstrated low overhead, high accuracy
•Used by J9 and other researchers

110

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations
Gathering profile information
Exploiting profile information in a JIT

Feedback-directed optimizations (“3a”)
Aggressive speculation and invalidation (“3b”)

Exploiting profile information in a VM

5. Summing Up and Looking Forward

111

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Types of Optimization

1. Ahead of time optimization
– It is never incorrect, prove for every execution

2. Runtime static optimization
– Will not require invalidation

Ex. inlining of final or static methods

3. Speculative optimizations
Profile, speculate, invalidate if needed
Two flavors:
a) True now, but may change

Ex. class hierarchy analysis-based inlining
b) True most of the time, but not always

Ex. speculative inlining with invalidation mechanisms

Current systems perform 2 & 3a, but not much of 3b

112

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Common FDO Techniques

Compiler optimizations
– Inlining
– Code Layout
– Multiversioning
– Potpourri

Runtime system optimizations
– Caching
– Speculative meta-data representations
– GC Acceleration
– Locality optimizations

113

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Fully Automatic Profile-Directed Inlining
Example: SELF-93 [Hölzle&Ungar’94]

– Profile-directed inlining integrated with sampling-based
recompilation

– When sampling counter triggered, crawl up call stack to find “root”
method of inline sequence

A
7

300

B

C
900

D
1000

•D trips counter threshold
•Crawl up stack, examine counters
•Recompile B and inline C and D

114

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Fully Automatic Profile-Directed Inlining

Example: IBM DK for Java [Suganuma et al. ‘02]

Always inline “tiny” methods (e.g. getters)
Use dynamic instrumentation to collect call site distribution

– Determine the most frequently called sites in “hot” methods
Constructs partial dynamic call graph of “hot” call edges
Inlining database to avoid performance perturbation

Experimental conclusion
– use static heuristics only for small size methods
– inline medium- and bigger only based on profile data

115

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Inlining Trials in SELF [Dean and Chambers 94]

Problem: Estimating inlining effect on optimization is hard
– May be desirable to customize inlining heuristic based on data flow effect

Solution: “Empirical” optimization

Compiler tentatively inlines a call site
Subsequently monitors compiler transformations to quantify effect on
optimization
Future inlining decisions based on past effects

116

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Code positioning
Archetype: Pettis and Hansen [PLDI 90]
Easy and profitable: employed in most (all?) production VMs
Synergy with trace scheduling [eg. Star-JIT/ORP]

A

B C

E

D

F

700

2

45

2

100

100700

A

B

D

F

C

E

0xc0000000

0xc0000100

117

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Multiversioning

Compiler generates multiple implementations of a code
sequence

– Emits code to choose best implementation at runtime

Static Multiversioning
– All possible implementations generated beforehand
– Can be done by static compiler
– FDO: Often driven by profile-data

Dynamic Multiversioning
– Multiple implementations generated on-the-fly
– Requires runtime code generation

118

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Static Multiversioning Example
Guarded inlining for a virtual method w/ dynamic test
Profile data indicates mostly monomorphic call sites
Note that downstream merge pollutes forward dataflow

If (dispatch
target is foo’)

inlined foo’ invokevirtual fooinvokevirtual foo

119

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Static Multiversioning with On-Stack Replacement [SELF, HotSpot, Jikes RVM]

Guarded inlining for a virtual method w/ patch point & OSR
– Patch no-op when class hierarchy changes
– Generate recovery code at runtime (more later)

No downstream merge -> better forward dataflow

No-op

inlined foo’ Trigger OSRinvokevirtual foo

120

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Dynamic Multiversioning: Customization in SELF

Generate new compiled version of a method for each possible receiver
class on first invocation with that receiver

Mostly targeted to eliminating virtual dispatch overhead
– Know precise type for ‘self’ (this) when compiling

Works well for small programs, scalability problems
– Naïve approach eventually abandoned
– Selective profile-guided algorithm later developed in Vortex [Dean et al. ‘95]

121

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

IBM DK for Java with FDO [Suganuma et al. ’01]

 1s t L eve l
C o m p iled C o d e

 2n d L eve l
C o m p iled C o d e

M ixed M o d e
In terp re te r

H o t M eth o d
 S am p lin g

D e ta iled V a lu e
 S a m p lin g

 3 rd L eve l
C o m p iled C o d e

D yn am ic C o m p ile r

P ro filin g S ys te m

Q u ick O p t
C o m p ile r

 S am p lin g
P ro file r

In stru m en tin g
P ro file r

F u ll O p t
C o m p ile r

S p ec ia l O p t
C o m p ile r

 M M I
P ro file r

B yteC o d e

In vo c a tio n F re q u en c y
L o o p Ite ra tio n

MMI (Mixed Mode Interpreter)
– Fast interpreter implemented in assembler

Quick compilation
– Reduced set of optimizations

Full compilation
– Full optimizations for selected hot methods

Special compilation
– Code specialization based on value profiling

122

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Specialization: IBM DK [Suganuma et al. ‘01]

For hot methods, compiler performs
“impact analysis” to evaluate potential
specializations

–Parameters and statics

For desirable specializations, compiler
dynamically installs instrumentation for
value profiling

Based on value profile, compiler
estimates if specialization is profitable
and generates specialized versions

Process can iterate

 Full Opt
Compiled Code

Install / Deinstall

 Sampling
 Profiler

Recompilation Request
 (w/ specialization)

Hot Method
Sampling Data

Code Generation

Instrumentation
 Code

Specialization
Planning

Instrumentation
Planning

Controller

Code Generation

Impact
Analysis

 Full Opt
 Compiler

Database

 Instrumenting
 Profiler

123

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Impact Analysis
Problem: When is specialization profitable?

Impact analysis: Compute estimate of code quality improvement if we knew
a specific value or type for some variables

– Constant Value of Primitive Type
– Constant Folding, Strength Reduction (div, fp transcendental)
– Elimination of Conditional Branches, Switch Statements

– Exact Object Type
– Removal of Unnecessary Type Checking Operations
– CHA Precision Improvement -> Inlining Opportunity

– Length of Array Object
– Elimination or Simplification of Bound Check Operations
– Loop Simplification

Dataflow algorithm

For each possible specialization target (variable), compute how many
statements could be eliminated or simplified

124

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Steady State: IBM DK for Java + FDO/Specialization
[Suganuma et al.’01]

mtrt jess compress db mpegaudio jack javac SPECjbb Geo. Mean
0

1

2

3

4

5

Re
la

ti
ve

 P
er

fo
rm

an
ce

 t
o

N
o

O
pt

MMI-full MMI-all

125

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

FDO Potpourri
Many opportunities to use profile info during various compiler phases
Almost any heuristic-based decision can be informed by profile data

Examples:
Loop unrolling

– Unroll “hot” loops only
Register allocation

– Spill in “cold” paths first
Global code motion

– Move computation from hot to cold blocks
Exception handling optimizations

– Avoid expensive runtime handlers for frequent exceptional flow
Speculative stack allocation

– Stack allocate objects that escape only on cold paths
Software prefetching

– Profile data guides placement of prefetch instructions

126

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations
Gathering profile information
Exploiting profile information in a JIT

Feedback-directed optimizations
Aggressive speculation and invalidation

Exploiting profile information in a VM

5. Summing Up and Looking Forward

127

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Example: Class hierarchy based inlining
longRunningMethod () {

Foo foo = getSomeObject();
foo.bar();

}

According to current class hierarchy
– Only one possible virtual target for foo.bar()
– Idea: speculate that class loading won’t occur

– Inline Foo::bar()
– Monitor class loading: if Foo::bar() is overridden

– Recompile all methods containing incorrect code

– But what if longRunningMethod never exits?
– One option: on-stack replacement

128

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Invalidation via On-Stack Replacement (OSR)
[Chambers,Hölzle&Ungar’91-94, Fink&Qian’03]

Transfer execution from compiled code m1 to compiled code m2
even while m1 runs on some thread's stack

Extremely general mechanism minimal restrictions on speculation

stack

PC

frame

m2

m2

stack

PC

frame

m1

m1

129

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

OSR Mechanisms
•Extract compiler-independent state from a suspended activation for m1
•Generate new code m2 for the suspended activation
•Transfer execution to the new code m2

m2

stack

PC

frame

m1

m1

compiler-
independent
state

stack

PC

frame
m2

m22 31

130

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

OSR and Inlining
Suppose optimizer inlines A B C:

A'

stack

PC

frame
A

A

21 3

JVM Scope
Descriptor

A

JVM Scope
Descriptor

C

JVM Scope
Descriptor

B

C'

B'

stack

PC

frame
m2

C'

A'

B'

AA

frame
C'frame

A'

frame

B'
frame

131

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Applications of OSR
1. Safe invalidation for speculative optimization

– Class-hierarchy-based inlining [HotSpot]
– Deferred compilation [SELF-91, HotSpot, Whaley 2001]

– Don't compile uncommon cases
– Improve dataflow optimization and reduce compile-time

2. Debug optimized code via dynamic deoptimization [Holzle et al. ‘92]
– At breakpoint, deoptimize activation to recover program state

3. Runtime optimization of long-running activations [SELF-93]
– Promote long-running loops to higher optimization level

Unoptimized Optimized Speculative

132

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Invalidation Discussion
OSR challenges

– Nontrivial to engineer
– Code that is both complex and infrequently executed is a prime

location for bugs
– Keeping around extra state may introduce overhead

Other existing invalidation techniques
– Pre-existence inlining [Detlefs&Agesen’99]
– Code patching [Suganama’02]
– Thin Guards [Arnold&Ryder’02]

Once invalidation mechanism exists
– Relatively easy to perform speculative optimizations
– Many researchers avoid interprocedural analysis of Java for the wrong

reasons
– Invalidation is “easy”. The fun parts are

– Must be able to detect when assumptions change
– Must be low overhead, incremental

– Area mostly unexplored (Hirzel et al.,’04)

133

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Invalidation via pre-existence [Detlefs & Agesen’99]

When applicable, enables all of the benefits of OSR, without the
complexities of a full OSR implementation.

int foo(A a) {
......
a.m1();

}

Key insight: if inlining m1 without a runtime guard is valid when foo is
invoked, it will be valid when the inlined code executes

– Exploiting “pre-existence” of object reference by a

Invalidation is required only for all future invocations
– No interrupted activations a la OSR

134

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Dynamic Class Hierarchy Mutation [Su and Lipasti, 06]

Idea:
– Find methods with control flow dependent on some “state” field
– Create specialized methods for the different values
– Use virtual function dispatch

Implementation
– Offline

– Finds hot methods with control dependent on states whose
value is set in cold methods

– Capture values and distribution of states (using sampling)
– Online

– JVM specializes hot methods with hot values by dispatching to
the specialized method at runtime

– Tracks assignments of hot fields (for opportunities and
invalidation)

– Modifies virtual function table to specialized
implementation

– Incorporated into an existing adaptive optimization system

135

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Dynamic Class Hierarchy Mutation [Su and Lipasti, ’06]

Results
Benchmarks: SPECjbb2000, SPECjbb2005, 4 other programs

2 to ~8% performance improvement
– author-created benchmark shows over 30% improvement

~1.5—7% code size increase

~2-17% compilation time increase

Assessment
Interesting idea

Specialization regions are limited to methods (uses virtual
dispatch), but system creates these methods

How do you do this online?

136

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Runtime Specialization With Optimistic Heap Analysis
[Shankar et al., OOPSLA’05]

Online technique, first to track heap variables
Motivation: specialization of “interpreter” programs

Algorithm
1. Find a specialization starting point in a hot function

2. Specialize: create a trace for each hot value k
– Loops unrolled, branch prediction for nonconstant conditionals
– Eliminate loads from invariant memory locations
– Eliminates safety checks, dynamic dispatch, etc.
– Modify dispatch to select appropriate trace

3. Invalidate when assumed invariant locations are updated

137

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Finding Specialization Points

The best point can be near the end of the function

Ideally: try to specialize from all instructions
– Pick the best one, as defined by “Influence”
– Influence(e) = Expected number of dynamic instructions from the

first occurrence of epc to the end of the function
– Dataflow-independent

System of equations, solved in linear time

138

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Finding Invariant Memory Locations
Provides the bulk of the speedup
Existing work relied on static analysis or annotations
Solution: sampled invariance profiling

– Track every nth store
– Locations detected as written: not constant
– Everything else: optimistically assumed constant

95.6% of claimed constants remained constant

Use Arnold-Ryder duplication-based sampling to gather other useful info
– CFG edge execution frequencies

– Helps identify good trace start points (influence)
– Hot values at particular program points

– Helps seed the constant propagator with initial values

139

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Invalidation

Because heap analysis is optimistic
– Need to guard assumed constant locations
– And invalidate corresponding traces

Solution to the two key problems
– Detect when such a location is updated

– Use write barriers (type information eliminates most barriers)
– Overhead: 0-12%

– Invalidate corresponding specialized traces
– A bit tricky: trace may need to be invalidated while executing
– Uses OSR

140

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Results
Benchmark Input Speedup

fixed image, various matrices 2.74x

fixed matrix, various images 1.23x

dotproduct
Converted from C version in DyC sparse constant vector 5.17x

bubblesort bytecodes 5.96x

binary search bytecodes 6.44x

jscheme
Interprets Scheme code partial evaluator 1.82x

query
Performs a database query; from DyC semi-invariant query 1.71x

sim8085
Intel 8085 Microprocessor simulator included sample program 1.70x

em3d (intentionally unspecializable)
Electromagnetic wave propagation -n 10000 -d 100 0.98x

interpreter
Interprets simple bytecodes

convolve
Transforms an image with a matrix; from the ImageJ
toolkit

141

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Runtime Specialization With Optimistic Heap Analysis
[Shankar et al., OOPSLA’05]

Assessment
– Completely online, usable in a JVM

– More optimistic approach

– Effective on interpreter programs
– What about general commercial applications?
– Need to overcome overhead

– Current state of the art in online specialization

142

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations
Gathering profile information
Exploiting profile information in a JIT

Feedback-directed optimizations
Aggressive speculation and invalidation

Exploiting profile information in a VM
– Dispatch optimizations
– Speculative object models
– GC and locality optimizations

5. Summing Up and Looking Forward

143

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Virtual/Interface Dispatch

Polymorphic inline cache [Holzle et al.‘91]

receiver = …
call PIC stub

Update PIC and
Dispatch to correct

receiver

if type = rectangle
jump to method

if type = circle
jump to method

call lookup

Rectangle code…

…

PIC stub

Circle code

Calling code

Requires limited dynamic code generation

144

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Speculative Meta-data Representations
Example: Object models

Tri-state hash code encoding [Bacon et al. ‘98, Agesen Sun EVM]

Can also elide lockword [Bacon et al.‘02]

00 10 01

Unhashed Hashed
(hashcode == address)

hashcode

Hashed
and Moved

lockword

hashcode

lockword

0

No synchronized
method

Has synchronized
method

No synchronized
method, but locked

145

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Adaptive GC techniques

Dynamically adjust heap size
– IBM DK [Dimpsey et al. ‘00] – policy depends on heap utilization and

fraction of time spent in GC

Switch GC algorithms to adjust to application behavior
– [Printezis ‘01] – switch between Mark&Sweep and Mark&Compact

for mature space in generational collector
– [Soman et al.’03] – more radical approach prototyped in Jikes RVM
– Not yet exploited in production VMs

Opportunistic GC
– [Hayes’91] – key objects keep large data structures live
– Not yet exploited in production VMs

146

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Spatial Locality Optimizations

Move objects, change objects to increase locality, or prefetch

Field reordering

Object splitting

Object co-location

147

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Spatial Locality Optimizations

Examples
– Kistler & Franz ’00
– Chilimbi et al., ’99
– Huang et al. ’04
– Adl-Tabatabai et al. ’04
– Chilimbi & Shahan ’06
– Siegwart & Hirzel ’06
– Etc.

Very hot area
Encouraging results, some with offline profiling, some online
Example of getting hardware and VM to work better together

148

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Course Outline

1. Background

2. Engineering a JIT Compiler

3. Adaptive Optimization

4. Feedback-Directed and Speculative Optimizations

5. Summing Up and Looking Forward
Debunking myths
The three waves of adaptive optimization
Future directions

149

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Debunked Myths

1. Because they execute at runtime, dynamic compilers must be blazingly fast

2. Dynamic class loading is a fundamental roadblock to cross-method
optimization

3. Sophisticated profiling is too expensive to perform online

4. A static compiler will always produce better code than a dynamic compiler

5. Infrastructure requirements stifle innovation in this field

6. Production VMs avoid complex optimizations, favoring stability over
performance

150

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Myths Revisited I

Myth: Because they execute at runtime dynamic compilers must be
blazingly fast.

– they cannot perform sophisticated optimizations, such as SSA,
graph-coloring register allocation, etc.

Reality:
– Production JITs perform all the classical optimizations
– Language-specific JITs exploit type information not available to C

compilers (or ‘classic’ multi-language backend optimizers)
– Selective optimization strategies successfully focus compilation

effort where needed

151

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Myths Revisited II

Myth: Dynamic class loading is a fundamental roadblock to cross-
method optimization:

– Because you never have the whole program, you cannot perform
interprocedural optimizations such as virtual method resolution,
virtual inlining, escape analysis

Reality:
– Can speculatively optimize with respect to current class hierarchy
– Sophisticated invalidation technology well-understood; mitigates

need for overly conservative assumptions
– Speculative optimization can be more aggressive than conservative,

static compilation

152

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Myths Revisited III

Myth: Sophisticated profiling is too expensive to perform online

Reality:
– Sampling-based profiling is cheap and can collect sophisticated information
– e.g. Arnold-Ryder full-duplication framework
– e.g. IBM DK dynamic instrumentation

153

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Myths Revisited IV

Myth: A static compiler can always get better performance than a dynamic
compiler because it can use an unlimited amount of analysis time.

Reality:
– Production JITs can implement all the classical optimizations static

compilers do
– Feedback-directed optimization should be more effective than

unlimited IPA without profile information
– Legacy C compiler backends can’t exploit type information and

other semantics that JITs routinely optimize
– However, ahead-of-time compilation still needed sometimes:

– Fast startup of large interactive apps
– Small footprint (e.g. embedded) devices

– Incorporating ahead-of-time compilation into full-fledged VM is
well-understood

154

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Myths Revisited V

Myth: Small independent academic research group cannot afford
infrastructure investment to innovate in this field

Reality:
– High-quality open-source virtual machines are available

– Jikes RVM, ORP, Kaffe, Mono, etc.
– Apache Harmony looks interesting

155

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Myth VI - Production VMs avoid complex optimizations,
favoring stability over performance

Perception: Complex, speculative optimizations introduce hard to
find bugs and are not worth the marginal performance returns.

Reality: There is pressure to obtain high performance
– Production JVMs perform many complex optimizations, including

– Optimizations that require sophisticated coding
– Difficult to debug dynamic behavior

– e.g., nondeterministic profile-guided optimizations
– Speculative optimizations involving runtime invalidation

– Production JVM’s are leading the field in VM performance
– Often ahead of academic and industrial research labs

156

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

This does not mean there are no problems

Commercial VMs do dynamic, cutting-edge optimizations, but..
– Complexity of VMs keeps growing

– Layer upon layer of optimizations with potential unknown interactions
– Often:

– Solutions may not be the most general or robust
– Targeted to observed performance problems

– Not evaluated with the usual scientific rigor
– Not published

– See performance “surprises” on new applications

There are many research issues that academic researchers could help
explore:

– Performance, robustness, and stability
– Would really help the commercial folks

157

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

How much performance gain is interesting?

Quiz: An optimization needs to produce > X% performance
improvement to be considered interesting. X = ?

– a) 1% b) 5% c) 10% d) 20%
– Sometimes research papers with < 5-10% improvement are labeled failures

Answer: it depends on complexity of the solution
– Value = performance gain / complexity
– Every line of code requires maintenance, and is a possible bug

– 10 LOC yielding 1.5% speedup
– Product team may incorporate in VM by end of week

– 25,000 LOC yielding 1.5% speedup:
– Not worth the complexity

Improving performance with reduced complexity is important
– Needs to be rewarded by program committees

158

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Comparison Between HLL VMs and Dynamic Binary Optimizers

HLL VM
Applies to programs in target languages

Exploits program structure and high-level
semantics (e.g. types)

Large gains from runtime optimization
(10X vs. interpreter)

Most effective optimizations: inlining,
register allocation

Optimizer usually expensive, employed
selectively

Dynamic Binary Optimizer
Applies to any program

Views stream of executed instructions,
can infer limited program structure and
low-level semantics
Smaller gains from runtime optimization
(10% would be good?)

Most effective optimizations: instruction
scheduling, code placement

Optimizer usually cheap, often employed
ubiquitously

Trends suggest that more programs will be written to managed HLLs
– For such programs, does binary optimizer add value?

Chen et al [CGO’06] combine both

159

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Waves of Adaptive Optimization

1. Use JIT to compile all methods (Smalltalk-80)

2. Selective Optimization (Adaptive Fortran, Self-93)
– Use many JIT levels to tradeoff cost/benefits of various optimizations
– Exploit 80-20 rule
– limits the costs of runtime compilation

3. Online FDO (Today’s JVMs)
– Use profile information of current run to improve optimization accuracy
– exploits benefit of runtime compilation

4. What is the next wave?

160

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

The 4th Wave of Adaptive Optimization?
Try multiple optimization strategies for a code region, online

Run and time all versions online

Determine which performs the best

Use it in the future

Examples
– Dynamic Feedback [Diniz & Rinard, ’97]

– Measure synchronization overhead of each version
– ADAPT [Voss & Eigenmann ’01]

– Uses fastest executed version after partitioning timings into bins
– Fursin et al. ’05

– Measure two versions after a stable period of execution is entered
– Performance Auditor [Lau et al. ’06]

– More details to follow

161

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Performance Auditor

Per-Method speedups
Aggressive inlining vs. default inlining (J9 JVM, 100 hot methods)

Aggressive inlining: mixed results
More slowdowns than speedups
But not a total loss – there are significant speedups!

162

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Wishful Thinking

Dream: A world without slowdowns
Default inlining heuristics miss these opportunities to improve performance
Goal: Be aggressive only when it produces speedup

163

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Challenge

Which implementation is fastest?
– Decide online, without stopping and restarting the program

Can’t just invoke each version once and compare times
– Changing inputs, global state, etc

Example: Sorting routine. Size of input determines run
time

– SortVersionA(10 entries) vs SortVersionB(1,000,000 entries)
– Invocation timings don’t reflect performance of A and B

– Unless we know that input size correlates with runtime
– But that requires high-level understanding of program behavior

Solution: Collect multiple timing samples for each version
– Use statistics to determine how many samples to collect

164

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Timing Infrastructure Design

Entrance of
Code Region

Stop timer
Record timing

. . .
Code Region

Version A
Code Region

Version A

Randomly choose
a version

Start timer

Code Region
Version B

Code Region
Version B

Code Region
Version N

Code Region
Version N

165

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Results

166

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Results

167

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Per-Method Accuracy

168

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

No shortage of research problems for virtual machines (1/2)
Higher-level optimizations

– General purpose components, using tiny fraction of functionality
– Higher-level programming models (e.g. J2EE, XML, Web Services, BPEL)

Traditional optimizations, but for non-”toy” benchmarks
– Selective optimization for programs with 30,000 methods
– Inlining for call stack > 200 deep

More aggressive use of speculation
– Dynamic compiler looks too much like traditional static compilers

Stability of performance
– Too many ad-hoc optimizations based on (poorly tuned) heuristics
– React to phase shifts

169

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

No shortage of research problems for virtual machines (2/2)
Optimizations for locality

– New challenges and opportunities in managed runtimes

Online interprocedural analysis
– Mostly unexplored
– Take a more global view of optimization

How to exploit new hardware designs
– Multicore, hardware performance monitors

Resource-constrained devices (space, power …)

Reducing complexity

170

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Future Directions
Better synergy with other levels of virtualization

– App server, OS, low level virtualization
– Eg. Hertz et al. ‘05

– Extend garbage collector to be aware of paging
– One level of indirection is clever, is > 1 redundancy?

Better synergy with hardware
– ISA is another level of virtualization!

– Eg. Adl-Tabatabai et al. ‘04
– Uses HW perf counter to drive prefetching optimization

Additional focus on real-time performance, security, and reliability
– Realtime eg: Bacon et al. [POPL’03, EMSOFT’05]

Virtual machines for “static” languages, such as C, Fortran, etc.
[Stoodley, CGO’06 Keynote]

171

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Concluding Thoughts

SE demands and processor frequency scaling issues require software
optimization to deliver performance

Virtual machines are here to stay
– Independent of popular language of the day

Dynamic languages require dynamic optimization
– An opportunity for “dynamic” thinkers

In many cases industrial practice is ahead of published research

Still plenty of open problems to solve

How can we encourage VM awareness in universities?

172

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Additional Information – details on my web page

3-day Future of Virtual Execution Environments
Workshop, Sept’04

– 32 experts, hosted by IBM
– Slides and video for most talk and discussion are available

VEE Conference
– VEE’07 will be co-located with FCRC/PLDI’07, June 13-15,

San Diego
– Submission Deadline: Feb 5, 2007
– General Chair: Chandra Krintz (UCSB)
– Co-program chairs: Steve Hand (Cambridge), Dave Tarditi

(Microsoft)

173

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Acknowledgements

Toshio Suganuma for data and slides on IBM DK for Java

AJ Shankar for data and slides

Matthew Arnold, Steve Fink, and Dave Grove for feedback and
significant material

174

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

General References

“A Survey of Adaptive Optimization in Virtual Machines” by
Arnold, Fink, Grove, Hind and Sweeney. Proceedings of IEEE,
Feb 2005.

– contains an extensive bibliography

Advanced Compiler Design and Implementation by Muchnick.
Published by Morgan Kaufmann, 1997.

Engineering a Compiler by Cooper & Torczon. Published by
Morgan Kaufmann 2004.

175

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

References: Case Study Virtual Machines
Self

– [Chambers&Ungar’91] “Making Pure Object-Oriented Languages Practical”
by Chambers and Ungar. OOPSLA 1991.

– [Hölzle&Ungar’94] “A Third Generation Self Implementation: Reconciling
Responsiveness with Performance” by Hölzle and Ungar. OOPSLA 1994.

Jikes RVM
– [Arnold et al ‘00] "Adaptive Optimization in the Jalapeño JVM" by Arnold,

Fink, Grove, Hind, and Sweeney, OOPSLA 2000.
– [Fink et al. OOPSLA’02 tutorial] “The Design and Implementation of the

Jikes RVM Optimizing Compiler” by Fink, Grove, and Hind.
– [Alpern et al ’05] IBM Systems Journal: historical overview
– Lots of other pubs, see Jikes RVM web site

IBM DK
– [Suganuma et al ‘01] “Design and Evaluation of Dynamic Optimizations for a

Java just-in-time” by Suganuma, Yasue, Kawahito, Komatsu, and Nakatani.
TOPLAS’05.

– Lots of other pubs, search for “Nakatani”

176

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Referenced Papers

A. Adl-Tabatabai, R.L. Hudson, M. J. Serrano, and S. Subramoney,
``Prefetch injection based on hardware monitoring and object
metadata,'‘ PLDI’04.
A.-R. Adl-Tabatabai, J. Bharadwaj, D.-Y. Chen, A. Ghuloum, V. Menon, B.
Murphy, M. Serrano, and T. Shpeisman, ``The StarJIT compiler: A
dynamic compiler for managed runtime environments,'' Intel Technology
Journal, 7(1) 19-31, Feb. 2003.
B. Alpern, A. Cocchi, and D. Grove, “Dynamic type checking in Jalapeño,”
in Proc. Usenix Java Virtual Machine Research and Technology Symp.
(JVM’01), 41–52.
G. Ammons, T. Ball, J. Larus, “Exploiting Hardware Performance Counters
with Flow and Context Sensitive Profiling” PLDI’97, 85-96.
M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney, “Adaptive
optimization in the Jalapeño JVM,” OOPSLA’00, ACM SIGPLAN Notices,
35(10), 47–65, Oct. 2000.
M. Arnold and P.F. Sweeney, “Approximating the Calling Context Tree via
Sampling”,
IBM Technical Report: RC-21789, July, 2000.
M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney, Architecture
and Policy for Adaptive Optimization in Virtual Machines, IBM Research
Report #23429, Nov 12, 2004.

177

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Referenced Papers

M. Arnold, A. Welc, VT. Rajan, Improving Virtual Machine
Performance Using a Cross-Run Profile Repository, OOPSLA’05.
M. Arnold and D. Grove, Collecting and Exploiting High-Accuracy
Call Graph Profiles in Virtual Machines, CGO’05.
M. Arnold and B. G. Ryder, “A framework for reducing the cost
of instrumented code,” PLDI’01, ACM SIGPLAN Notices, 36(5),
168–179, May 2001.
M. Arnold and B.G. Ryder, ``Thin guards: A simple and effective
technique for reducing the penalty of dynamic class loading,''
ECOOP’02.
D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano, ``Thin locks:
Featherweight synchronization for Java, PLDI’98, ACM
SIGPLAN Notices, 33(5), 258-268.
D. F. Bacon, S. J. Fink, and D.Grove, ``Space- and time-efficient
implementations of the Java object model,'' ECOOP’02.

178

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Referenced Papers

D. Bacon, P. Cheng, and V.T. Rajan, “A Real-time Garbage Collector with
Low Overhead and Consistent Utilization”, POPL’03
D. Bacon, P. Cheng, D. Grove, M. Hind, V.T. Rajan, E. Yahav, M. Hauswirth,
C. Kirsch, D. Spoonhower, and M. Vechev, “High-level Real-time
Programming in Java, EMSOFT’05.
C. Click, “Global Code Motion/Global Value Numbering”, PLDI’95, 246-
257.
C. Chambers and D. Ungar, “Making pure object-oriented languages
practical,” OOPSLA’91, 1–15.
C. Chambers and D. Ungar, “Iterative type analysis and extended
message splitting: Optimizing dynamically-typed object-oriented
programs,” PLDI’00, ACM SIGPLAN Notices, 25(6), 150–164, Jun. 1990.
C. Click and J. Rose, “Fast subtype checking in the HotSpot JVM,” in
Proc. Joint ACMJava Grande—ISCOPE 2001 Conf., 96–107.
T. M. Chilimbi and J. R. Larus, ``Using generational garbage collection to
implement cache-conscious data placement,'‘ PLDI’99, ACM SIGPLAN
Notices, 34(3), 37--48, Mar. 1999.
T. Chilimbi and R. Shaham, “Cache-conscious Coallocation of Hot Data
Streams”, PLDI’06

179

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Referenced Papers

M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth, ``The open
runtime platform: A flexible high-performance managed runtime
environment,'‘ Intel Technology Journal, 7(1), 5--18, 2003.
J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” in Proc. 9th Eur. Conf.
Object-Oriented Programming, 1995, 77–101.
J. Dean and C. Chambers, ``Towards better inlining decisions using
inlining trials,'' LISP and Functional Programming, 1994, 273-282.
D. Detlefs and O. Agesen, ``Inlining of virtual methods,'' ECOOP’99,
258-278.
L. P. Deutsch and A. M. Schiffman, “Efficient implementation of the
smalltalk-80 system,” POPL’84, 297–302.
R. Dimpsey, R. Arora, and K.Kuiper, ``Java server performance: A case
study of building efficient, scalable JVMs,'‘ IBM Systems Journal, 39(1),
151-174, Feb. 2000.
P. C. Diniz and M. C. Rinard, “Dynamic feedback: An effective technique
for adaptive computing.” PLDI’97, ACM SIG}PLAN Notices, 32(5):71-84.

180

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Referenced Papers

S. J. Fink , D. Grove, and M. Hind, The Design and Implementation of the
Jikes RVM Optimizing Compiler, OOPSLA’02 tutorial.
S. J. Fink and F.Qian, ``Design, implementation and evaluation of
adaptive recompilation with on-stack replacement,'' CGO’03, 241--252.
G. Fursin, A. Cohen, M. O'Boyle, and O.Temam. “A practical method for
quickly evaluating program optimizations.” 1st International Conference
on High Performance Embedded Architectures & Compilers (HiPEAC
2005), number 3793 in LNCS, pages 29-46. Springer Verlag, November
2005.
Neal Glew, Spyros Triantafyllis, Michal Cierniak, Marsha Eng, Brian
Lewis, and James Stichnoth. LIL: An Architecture-Neutral Lanugage for
Virtual-Machine Stubs. In 3rd Virtual Machine Research and Technology
Symposium, San Jose, CA, USA, 111-125, May 2004.
J. Gosling, B. Joy, and G. Steele, The Java Language Specification.
Reading, MA: Addison-Wesley, 1996.

181

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Referenced Papers

G. J. Hansen, “Adaptive systems for the dynamic run-time optimization of
programs,” Ph.D. dissertation, Carnegie-Mellon Univ., Pittsburgh, PA, 1974.
B. Hayes, ``Using key object opportunism to collect old objects,'' OOPSLA’91, 33-
46 U. Hölzle, C. Chambers, and D. Ungar, “Optimizing Dynamically-Typed Object-
Oriented Programming Languages with Polymorphic Inline Caches, ECOOP’91
M. Hertz, Y. Feng, E. Berger, “Garbage Collection Without Paging”, PLDI’05
M. Hirzel, A. Diwan, and M. Hind, “Pointer Analysis in the Presence of Dynamic Class
Loading”, ECOOP’04.
U. Hölzle and D. Ungar, “A third generation SELF implementation: Reconciling
responsiveness with performance,” OOPSLA’94, ACMSIGPLAN Notices, 29(10),
229–243, Oct. 1994.
X. Huang, S. M. Blackburn, K. S. McKinley, J.E.B. Moss, Z.Wang, and P.Cheng, ``The
garbage collection advantage: Improving program locality,'‘ OOPSLA’04.
K. Ishizaki, M. Takeuchi, K. Kawachiya, T. Suganuma, O. Gohda, T. Inagaki, A. Koseki,
K. Ogata, M. Kawahito, T. Yasue, T. Ogasawara, T. Onodera, H. Komatsu, and T.
Nakatani, “Effectiveness of cross-platform optimizations for a Java just-in-time
compiler,” OOPSLA’03, ACM SIGPLAN Notices, 38(11), 187–204, Nov. 2003.

182

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Referenced Papers

R. Jones and R. Linz, Garbage collection: algorithms for automatic
dynamic memory management, 1996.
T. Kistler and M. Franz, ``Continuous program optimization: {A} case
study,'‘ TOPLAS 25(4), 500-548. July 2003.
K. Kawachiya, A. Koseki, and T. Onodera, “Lock reservation: Java locks
can mostly do without atomic operations,'' OOPSLA’02, ACM SIGPLAN
Notices, 37(11), 130-141, Nov. 2002,
C. Krintz and B. Calder, Using Annotation to Reduce Dynamic
Optimization Time, PLDI'01.
C. Krintz, Coupling On-Line and Off-Line Profile Information to Improve
Program Performance, CGO’03.
J. Lau, M. Arnold, M. Hind, and B. Calder, “Online Performance Auditing:
Using Hot Optimizations Without Getting Burned”, PLDI’06
J. McCarthy, “History of LISP,” ACM SIGPLAN Notices, 13(8), 217–223,
Aug. 1978.
M. Paleczny, C. Vick, and C. Click, “The Java hotspot server compiler,” in
Proc. Usenix Java Virtual Machine Research and Technology Symp.
(JVM’01), 2001, 1–12.

183

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Referenced Papers

K. Pettis and R.C. Hansen, ``Profile guided code positioning,'‘ PLDI’90 25(6), 16-27.
T. Printezis, ``Hot-swapping between a Mark Sweep and a Mark & Compact garbage
collector in a generational environment,'' JVM’01, Apr. 2001, 171--183.
M. Serrano, R. Bordawekar, S.Midkiff, and M. Gupta, “Quicksilver: A quasistatic
compiler for Java,” OOPSLA’00, ACM SIGPLAN Notices, 35(10), 66–82, Oct. 2000.
A. Shankar, S. Subramanya, R. Bodik, J. Smith, Runtime Specialization With
Optimistic Heap Analysis, OOPSLA’05.
D. Siegwart and M Hirzel, ISMM’06, “Improving Locality with Parallel Hierarchical
Copying GC.
M. Smith. “Overcoming the Challenges to Feedback-Directed Optimization,”
Dynamo’00, ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and
Optimization (Dynamo'00), invited paper, Boston, MA, January 18, 2000. Also
appears in ACM SIGPLAN Notices, 35(7):1–11, July 2000.
S. Soman, C. Krintz, and D. Bacon, ``Dynamic selection of application-specific
garbage collection,'‘ ISMM’04.
S. Srinivas, Y. Wang, M. Chen, Q. Zhang, E. Lin, V. Ushakov, Y. Zach, S. Goldenberg,
“Java* JNI Bridge: An MRTE Framework for Mixed Native ISA Execution”,
CGO’06.

184

IBM Research

ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation

Referenced Papers

K. Stoodley, “Productivity and Performance: Future Directions in
Compilers “ CGO’06 Keynote
M. Stoodley, Challenges to Improving the Performance of Middleware
Applications, MRE’05 talk.
L. Su and M. Lipasti, “Dynamic Class Hierarchy Mutation”, CGO’06
T. Suganuma, T. Yasue, T. Nakatani, “An Empirical Study of Method
Inlining for a Java Just-in-Time Compiler”, JVM’02.
T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani,
“Design and Evaluation of Dynamic Optimizations for a Java just-in-
time”, TOPLAS’05, 27(4), 732-785
M. J. Voss and R.Eigemann. “High-level adaptive program optimization
with ADAPT”, PPOPP’01, ACM SIGPLAN Notices, 36(7):93—102.
J. Whaley, “A portable sampling-based profiler for Java virtual
machines”, Java Grande 2000, 78-87.
J. Whaley, ``Partial method compilation using dynamic profile
information,'‘ OOPSLA’01, SIGPLAN Notices, 36(11), 166--179, Nov.
2001.
X. Zhuang, M. Serrano, H. Cain, J-D. Choi, Accurate, Efficient, and
Adaptive Calling Context Profiling, PLDI’06.

	Dynamic Compilation and Adaptive Optimization in Virtual Machines
	Who am I?
	Course Goals
	Course Outline
	Course Outline
	Course Outline - Summary
	Developing Sophisticated Software
	The Catch
	Type Safe, OO, VM-implemented Languages Are Mainstream
	Have We Answered the Performance Challenges?
	Future Trends - Software
	Future Trends – Hardware
	Future Trends – Hardware
	Course Outline
	Well-Known “Facts”
	Terminology
	Adaptive Optimization Hall of Fame
	Adaptive Optimization Hall of Fame
	Quick History of VMs
	Quick History of VMs
	Featured VMs in this Talk
	Course Outline
	How are Programs Executed?
	Interpretation vs. (Dynamic) Compilation
	Selective Optimization
	Course Outline
	What is a JIT Compiler?
	Design Requirements
	Structure of a JIT Compiler
	Course Outline - Summary
	Case Study 1: Jikes RVM [Fink et al., OOPSLA’02 tutorial]
	Jikes RVM Opt Level 0
	Jikes RVM Opt Level 1
	Jikes RVM Opt Level 2
	Case Study 2: IBM DK [Ishizaki et al. ’03]
	Optimizations on Extended Bytecodes
	Optimizations on Quadruples
	Optimizations on DAG of QUADs
	Effectiveness of Optimizations in IBM DK [Ishizaki, et al. OOPSLA’03]
	Case Study 3: HotSpot Server JIT [Paleczny et al. ’01]
	HotSpot Server JIT
	Course Outline
	High level language-specific optimizations
	Optimizing Virtual Function Calls
	Speculatively Optimizing Virtual Function Calls
	Optimization of Heap Allocated Objects
	Scalar Replacement
	Redundant Load Elimination
	Optimizing with Precise Exceptions
	Course Outline
	JIT/VM Interactions
	JIT Support for Memory Management
	JIT Support for Other Runtime Services
	Runtime Support for JIT Generated Code
	Advantages of JIT/VM Interdependency
	Disadvantages of JIT/VM Interdependency
	Course Outline
	Selective Optimization
	Selective Optimization Examples
	Selective Optimization Effectiveness: Jikes RVM, [Arnold et al.,TR Nov’04]
	Selective Optimization Effectiveness: Jikes RVM, [Arnold et al.,TR Nov’04]
	Designing an Adaptive Optimization System
	Course Outline
	Profiling: How to Find Candidates for Optimization
	How to Find Candidates for Optimization: Counters
	How to Find Candidates for Optimization: Call Stack Sampling
	How to Find Candidates for Optimization: Call Stack Sampling
	How to Find Candidates for Optimization
	Recompilation Policies: Which Candidates to Optimize?
	Course Outline
	Case Studies
	Case Study 1: Jikes RVM Architecture [Arnold et al. ’00]
	Jikes RVM: Recompilation Policy – Cost/Benefit Model
	Short-running Programs: Jikes RVM
	Short-running Programs: Jikes RVM
	Steady State: Jikes RVM
	Steady State: Jikes RVM, no FDO (Mar ’04)
	Case Study 2: IBM DK for Java [Suganuma et al. ’01, ‘05]
	Profile Collection
	Recompilation Policy
	Startup: IBM DK for Java, no Specialization [Suganuma et al. ’01]
	Steady State: IBM DK for Java, no Specialization [Suganuma et al. ’01]
	But the world is not always simple
	Example: Jikes RVM Compilers on AIX/PPC
	Course Outline
	Understanding System Behavior
	Code Size Comparison, startup: IBM DK for Java
	Code Size Comparison, steady state: IBM DK for Java
	Execution Profile: Jikes RVM (Jul ’02)
	Recomp. Decisions, 20 iterations for each benchmarkJikes RVM
	Recomp. Decisions, 20 iterations for each benchmarkJikes RVM
	Recompilation Activity: Jikes RVM (Jul ’02)
	Recompilation Activity (IBM DK for Java)
	Course Outline
	Research Issues for Adaptive Optimization (1/2)
	Research Issues for Adaptive Optimization (2/2)
	Learning From a Previous Run
	Arnold, Welc, Rajan [OOPSLA’05]
	Profile Repository: Histogram of Method Runtimes
	Profile Repository: Histogram of Method Runtimes
	Course Outline
	Feedback-Directed Optimization (FDO)
	Issues in Gathering Profile Data
	Issue 1: What data do you collect?
	Issue 2: How do you collect the data?
	Issue 3: When do you collect the data?
	Common Approaches in VMs
	IBM DK Profiler [Suganuma et al ’01,’02]
	Arnold-Ryder [PLDI 01]: Full Duplication Profiling
	Course Outline
	Types of Optimization
	Common FDO Techniques
	Fully Automatic Profile-Directed Inlining
	Fully Automatic Profile-Directed Inlining
	Inlining Trials in SELF [Dean and Chambers 94]
	Code positioning
	Multiversioning
	Static Multiversioning Example
	Static Multiversioning with On-Stack Replacement [SELF, HotSpot, Jikes RVM]
	Dynamic Multiversioning: Customization in SELF
	IBM DK for Java with FDO [Suganuma et al. ’01]
	Specialization: IBM DK [Suganuma et al. ‘01]
	Impact Analysis
	Steady State: IBM DK for Java + FDO/Specialization [Suganuma et al.’01]
	FDO Potpourri
	Course Outline
	Example: Class hierarchy based inlining
	Invalidation via On-Stack Replacement (OSR) [Chambers,Hölzle&Ungar’91-94, Fink&Qian’03]
	OSR Mechanisms
	OSR and Inlining
	Applications of OSR
	Invalidation Discussion
	Invalidation via pre-existence [Detlefs & Agesen’99]
	Dynamic Class Hierarchy Mutation [Su and Lipasti, 06]
	Dynamic Class Hierarchy Mutation [Su and Lipasti, ’06]
	Runtime Specialization With Optimistic Heap Analysis [Shankar et al., OOPSLA’05]
	Finding Specialization Points
	Finding Invariant Memory Locations
	Invalidation
	Results
	Runtime Specialization With Optimistic Heap Analysis [Shankar et al., OOPSLA’05]
	Course Outline
	Virtual/Interface Dispatch
	Speculative Meta-data Representations
	Adaptive GC techniques
	Spatial Locality Optimizations
	Spatial Locality Optimizations
	Course Outline
	Debunked Myths
	Myths Revisited I
	Myths Revisited II
	Myths Revisited III
	Myths Revisited IV
	Myths Revisited V
	Myth VI - Production VMs avoid complex optimizations, favoring stability over performance
	This does not mean there are no problems
	How much performance gain is interesting?
	Comparison Between HLL VMs and Dynamic Binary Optimizers
	Waves of Adaptive Optimization
	The 4th Wave of Adaptive Optimization?
	Performance Auditor
	Wishful Thinking
	Challenge
	Timing Infrastructure Design
	Results
	Results
	Per-Method Accuracy
	No shortage of research problems for virtual machines (1/2)
	No shortage of research problems for virtual machines (2/2)
	Future Directions
	Concluding Thoughts
	Additional Information – details on my web page
	Acknowledgements
	General References
	References: Case Study Virtual Machines
	Referenced Papers
	Referenced Papers
	Referenced Papers
	Referenced Papers
	Referenced Papers
	Referenced Papers
	Referenced Papers
	Referenced Papers
	Referenced Papers

