
Workshops and tutorials take place on Saturday, September 11 and
Sunday, September 12.

Program of Saturday, September 11
On Saturday we have a tutorial and two workshops in parallel and
(optionally) a dinner in the evening:

Tutorial 1:
Programming Ct � Porting Applications to
Future Multicore
Michael Klemm and Peter Hinsbeeck (Intel)

Saturday, September 11, Sitzungssaal, 8:30 am � 5:00 pm

Intel® Ct Technology supports a high-level, generalized and portable
programming model for data-parallel programming. It simplifies the
efficient parallelization of computations over large data sets.
Programmers do not need to focus on the implementation details of
their data-parallel program, but instead can express a program's
algorithms in terms of operations on collections of data. Ct's
deterministic semantics avoid race conditions and deadlocks by
design, improving reliability and maintainability, and can be used for
both rapid prototyping and production-stable codes.

Ct manages the complexity of mapping the high-level description of the
program's operations onto an efficient implementation by employing
JIT compilation techniques. Its internal JIT compiler dynamically
optimizes a program to whatever hardware is used for execution,
automatically emitting vectorized and multi-threaded code appropriate
for that hardware's microarchitecture. With Ct's JIT compiler it
becomes possible to efficiently execute the program on multiple
computing platforms (e.g. Intel® SSE, Intel® AVX) without recompiling
the application. Ct's JIT compiler is also the key to support upcoming
execution environments without the need to recompile a program:
updating the Ct library alone, without recompilation of the application,
will suffice to enable future platforms.

In this tutorial, we introduce to the participants the programming model
and the execution environment of Intel® Ct Technology. We provide an
in-depth guide to the basic building blocks of the Ct language: scalar
types, dense and sparse vector data types, vector operations,
elemental functions, and control flow. We present how Ct fits into an
application's control flow and can be used to express different levels of
abstraction. Based on real-world scientific codes and other examples,
we then show how to construct data-parallel algorithms from these
basic building blocks. We demonstrate how to smoothly move an
existing sequential code base to a parallel code base. In addition, we
illustrate how to make use of external libraries such as the Intel® Math
Kernel Library. We close the tutorial with a live demonstration of

Workshop 1:
GPUs and Scientific Applications (GPUScA)
Eduard Mehofer, Markus Schordan, Dan Quinlan and Beniamino Di
Martino

Clubraum, Saturday, September 11

8:45
Opening & Welcome

9:00

9:00 Keynote Address: Vivek Sarkar
Towards a Portable Execution Model for Extreme Scale
Multicore Systems10:00

10:30 Applications with strong algorithmic aspects

12:00

Improving the GPU-based Collision Check Procedure for
Distributed Crowd Simulations
Guillermo Vigueras, Juan M. Orduña, Miguel Lozano, Jose M.
Cecilia, and Jose M. García

Fast GPU perspective grid construction and triangle tracing for
Exhaustive Ray Tracing of Highly Coherent Rays
Lancelot Perrotte and Guillaume Saupin

Solving Planted Motif Problem on GPU
Naga Shailaja Dasari, Ranjan Desh, and Zubair M

13:30 Applications with strong domain aspects

15:00

Scalability of Color-Based Segmentation of Football Players
over GPUs
Miguel Angel Montañes, Enrique F. Torres, Jesus Martinez,
and J. Elias Herrero

Fluid Simulation With CUDA Using the Lattice Boltzmann
Method
Andreas Monitzer

A Framework for GPU Accelerated Deformable Object
Modeling
Aria Shahingohar and Roy Eagleson

15:30 Parallel programming technology

16:30

ViennaCL - A High Level Linear Algebra Library for GPUs and
Multi-Core CPUs
Karl Rupp, Florian Rudolf, and Josef Weinbub

Dynamic Work Scheduling for GPU Systems
Miguel Angel Lastras-Montaño, Maged M. Michael, and J. Alan
Bivens

16:30
Closing Remarks

16:45

Workshop 2:
Parallel Architectures and Bioinspired
Algorithms (WPABA)
Jose L. Risco-Martín, Francisco Fernández and Juan Lanchares

Museumszimmer, Saturday, September 11

8:30
Welcome and introduction

8:40

8:40 A Parallel Memetic Algorithm for Workload Distribution in
Dynamic Multi-Agents Systems
David Millá and J. Ignacio Hidalgo9:00

9:00 Communication-focussed approach for real-time neural
simulation
Paul Fox and Simon Moore9:25

9:30 Effective Mutation Operator for Nurse Scheduling by
Cooperative GA and Its Parallel Processing
Makoto Ohki9:55

10:30 Hybridizing Memetic Algorithms and Particle Filters for Visual
Tracking on GPU
Raul Cabido, Antonio Sanz and Juan José Pantrigo Fernández10:55

11:00 P System Simulations on Massively Parallel Architectures
José María Cecilia, José Manuel García, Ginés D. Guerrero,
Miguel A. Martínez del Amor, Mario J. Pérez-Jiménez and
Manuel Ujaldon11:25

11:30 GPU-Accelerated Genetic Algorithms
Rajvi Shah, P J Narayanan and Kishore Kothapalli11:55

Workshop Dinner
7:00 For a casual dinner on Saturday we have booked a table at the

Wirtshaus Biergarten Zattl (Freyung 6, 1010 Vienna).
Workshop and tutorial participants are welcome to join. Note,
the dinner is not included in the fees. You have to pay for your
own consumption.

open
end

Program of Sunday, September 12
On Sunday we have a workshop in the morning and a tutorial in the
afternoon:

Workshop 3:
Programming Models for Emerging
Architectures (PMEA)
Xavier Martorell, Rosa M. Badia, Marc Gonzàlez and Alejandro Duran

Sitzungssaal, Sunday, September 12

8:30 Keynote: Calin Cascaval
Power Programming9:30

9:30 Mapping a Class of Applications in Heterogeneous
Multithreading Architectures
J. Lucena, O. Plata, N. Guil10:00

10:30 Enjing - a JIT Backend for CUDA Devices
M. Bentsen, B. Vinter

Combining Processor Virtualization and Component-Based
Engineering in C for Many-Core Heterogeneous Embedded
MPSoCs
E. Rohou, A. Ornstein, A. Özcan, M. Cornero

QoS-ocMPI: QoS-aware on-chip Message Passing Library for
NoC-based Many-Core MPSoCs
J. Joven, F. Angiolini, D. Castells-Rufas, G. De Micheli, J.
Carrabina-Bordoll12:00

Tutorial 3:
Automatic Parallelization Techniques and
the Cetus Source-to-Source Compiler
Infrastructure
Rudi Eigenmann and Sam Midkiff (Purdue University)

Sitzungssaal, Sunday, September 12, 1:30 pm � 5:00 pm

The increased importance of parallelism has made parallelizing
compiler technology, and easy-to-learn and use compiler
infrastructures implementing this technology, increasingly important to
researchers, developers and students in the fields of computer
architecture, compilers and high performance applications. This tutorial
will cover basic parallelizing compiler technology, including
dependence analysis, dependence breaking transformations,
optimizing transformations, and limits on compiler technology. We will
then describe the Cetus source-to-source restructuring compiler
infrastructure for C programs which is already used by a substantial
number of research projects around the world. Cetus is a freely
available, open source community compiler developed with support
from the National Science Foundation. Its main distinction from related
infrastructure efforts is its focus on high-level source-to-source
translation for C programs and abstract internal representation. These
features have already proven to enable highly efficient design and
implementation of new compilation techniques. The tutorial aims to
reach a wider audience and provide guidance for the use of the
resource and its advanced optimization techniques. These techniques
include new symbolic analysis methods, such as range analysis,
automatic parallelization for multicores, and optimizations for
heterogeneous multicores.

Topics Covered:

The first part of the tutorial will consist of an introduction to parallelizing
compiler technology. Topics include:

� Dependence analysis and its relation to parallelization;
� Dependence eliminating transformations (i.e. privatization

and expansion, forward substitution)
� Program optimizations, including vectorization and

parallelization, parallelization of fully and partially parallel
loops;

� Issues raised by optimizing explicitly parallel programs;
� Limits on compiler technology, and techniques such as

cloning and profiling to overcome these.

The second part of the tutorial introduces Cetus, a source-to-source
restructuring compiler infrastructure for C programs. Cetus is a
community resource developed in support by the National Science
Foundation. The infrastructure is available at cetus.ecn.purdue.edu.
The tutorial will cover:

� Introduction to Cetus' capabilities;
� Internal abstract program representation;
� Optimization and analysis passes currently available in

Cetus, including symbolic analysis methods, such as range
analysis, automatic parallelization for multicores, and
optimizations for heterogeneous multicores;

� Roadmap of ongoing and future enhancements.

