

Problem Statement

- Community has worked on parallel programming for more than 30 years
 - programming models
 - machine models
 - programming languages
 - **–**
- However, parallel programming is still a research problem
 - matrix computations, stencil computations, FFTs etc. are well-understood
 - few insights for irregular applications
 - each new application is a "new phenomenon"
- Thesis: we need a science of parallel programming
 - analysis: framework for thinking about parallelism in application
 - synthesis: produce an efficient parallel implementation of application

"The Alchemist" Cornelius Bega (1663)

Analogy: science of electro-magnetism

Seemingly unrelated phenomena

Unifying abstractions

Specialized models that exploit structure

Organization of talk

- Seemingly unrelated parallel algorithms and data structures
 - Stencil codes
 - Delaunay mesh refinement
 - Event-driven simulation
 - Graph reduction of functional languages
 -
- Unifying abstractions
 - Operator formulation of algorithms
 - Amorphous data-parallelism
 - Galois programming model
 - Baseline parallel implementation
- Specialized implementations that exploit structure
 - Structure of algorithms
 - Optimized compiler and runtime system support for different kinds of structure
- Ongoing work

Seemingly unrelated algorithms

Examples

Application/domain	Algorithm
Meshing	Generation/refinement/partitioning
Compilers	Iterative and elimination-based dataflow algorithms
Functional interpreters	Graph reduction, static and dynamic dataflow
Maxflow	Preflow-push, augmenting paths
Minimal spanning trees	Prim, Kruskal, Boruvka
Event-driven simulation	Chandy-Misra-Bryant, Jefferson Timewarp
Al	Message-passing algorithms
Stencil computations	Jacobi, Gauss-Seidel, red-black ordering
Data-mining	Clustering

Stencil computation: Jacobi iteration

- Finite-difference method for solving pde's
 - discrete representation of domain: grid
- Values at interior points are updated using values at neighbors
 - values at boundary points are fixed
- Data structure:
 - dense arrays
- Parallelism:
 - values at next time step can be computed simultaneously
 - parallelism is not dependent on runtime values
- Compiler can find the parallelism
 - spatial loops are DO-ALL loops

```
//Jacobi iteration with 5-point stencil

//initialize array A

for time = 1, nsteps

for \langle i,j \rangle in [2,n-1]x[2,n-1]

temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

for \langle i,j \rangle in [2,n-1]x[2,n-1]:

A(i,j)=temp(i,j)
```


Jacobi iteration, 5-point stencil

Delaunay Mesh Refinement

```
Mesh m = /* read in mesh */
WorkList wl;
wl.add(m.badTriangles());
while (true) {
         if ( wl.empty() ) break;
        Element e = wl.get();
        if (e no longer in mesh) continue;
        Cavity c = new Cavity(e);//determine new cavity
        c.expand();
        c.retriangulate();//re-triangulate region
        m.update(c);//update mesh
        wl.add(c.badTriangles());
```


Event-driven simulation

- Stations communicate by sending messages with time-stamps on FIFO channels
- Stations have internal state that is updated when a message is processed
- Messages must be processed in timeorder at each station
- Data structure:
 - Messages in event-queue, sorted in timeorder
- Parallelism:
 - activities created in future may interfere with current activities
 - → static parallelization and interference graph technique will not work
 - Jefferson time-warp
 - station can fire when it has an incoming message on *any* edge
 - requires roll-back if speculative conflict is detected
 - Chandy-Misra-Bryant
 - conservative event-driven simulation
 - requires null messages to avoid deadlock

Remarks on algorithms

Algorithms:

- parallelism can be dependent on runtime values
 - DMR, event-driven simulation, graph reduction,....
- don't-care non-determinism
 - nothing to do with concurrency
 - DMR, graph reduction
- activities created in the future may interfere with current activities
 - event-driven simulation...

Data structures:

- relatively few algorithms use dense arrays
- more common: graphs, trees, lists, priority queues,...
- Parallelism in irregular algorithms is very complex
 - static parallelization usually does not work
 - dependence graphs are the wrong abstraction
 - finding parallelism: most of the work must be done at runtime

Organization of talk

- Seemingly unrelated parallel algorithms and data structures
 - Stencil codes
 - Delaunay mesh refinement
 - Event-driven simulation
 - Graph reduction of functional languages
 -
- Unifying abstractions
 - Operator formulation of algorithms
 - Amorphous data-parallelism
 - Baseline parallel implementation for exploiting amorphous data-parallelism
- Specialized implementations that exploit structure
 - Structure of algorithms
 - Optimized compiler and runtime system support for different kinds of structure
- Ongoing work

Unifying abstractions

- Should provide a model of parallelism in irregular algorithms
- Ideally, unified treatment of parallelism in regular and irregular algorithms
 - parallelism in regular algorithms should emerge as a special case of general model
 - (cf.) correspondence principles in Physics
- Abstractions should be effective
 - should be possible to write an interpreter to execute algorithms in parallel

Operator formulation of algorithms

- Algorithm formulated in data-centric terms
 - active element:
 - node or edge where computation is needed
 - DMR: nodes representing bad triangles
 - Event-driven simulation: station with incoming message
 - Jacobi: nodes of mesh
 - activity:
 - application of operator to active element
 - neighborhood:
 - set of nodes and edges read/written to perform computation
 - DMR: cavity of bad triangle
 - Event-driven simulation: station
 - Jacobi: nodes in stencil
 - distinct usually from neighbors in graph
 - ordering:
 - order in which active elements must be executed in a sequential implementation
 - any order (Jacobi, DMR, graph reduction)
 - some problem-dependent order (event-driven simulation)
- Amorphous data-parallelism
 - active nodes can be processed in parallel, subject to
 - neighborhood constraints
 - ordering constraints

: active node

: neighborhood

Galois programming model (PLDI 2007)

- Joe programmers
 - sequential, OO model
 - Galois set iterators: for iterating over unordered and ordered sets of active elements
 - for each e in Set S do B(e)
 - evaluate B(e) for each element in set S
 - no a priori order on iterations
 - set S may get new elements during execution
 - for each e in OrderedSet S do B(e)
 - evaluate B(e) for each element in set S
 - perform iterations in order specified by OrderedSet
 - set S may get new elements during execution
- Stephanie programmers
 - Galois concurrent data structure library
- (Wirth) Algorithms + Data structures = Programs
 - (cf) database programming

DMR using Galois iterators

Galois parallel execution model

- Parallel execution model:
 - shared-memory
 - optimistic execution of Galois iterators
- Implementation:
 - master thread begins execution of program
 - when it encounters iterator, worker threads help by executing iterations concurrently
 - barrier synchronization at end of iterator
- Independence of neighborhoods:
 - logical locks on nodes and edges
 - implemented using CAS operations
- Ordering constraints for ordered set <u>Joe Program</u> iterator:
 - execute iterations out of order but commit in order
 - cf. out-of-order CPUs

Concurrent

Data structure

Parameter tool (PPoPP 2009)

- Measures amorphous data-parallelism in irregular program execution
- Idealized execution model:
 - unbounded number of processors
 - applying operator at active node takes one time step
 - execute a maximal set of active nodes
 - perfect knowledge of neighborhood and ordering constraints
- Useful as an analysis tool

Example: DMR

Input mesh:

- Produced by Triangle (Shewchuck)
- 550K triangles
- Roughly half are badly shaped

Available parallelism:

 How many non-conflicting triangles can be expanded at each time step?

Parallelism intensity:

 What fraction of the total number of bad triangles can be expanded at each step?

Example:Barnes-Hut

- Four phases:
 - build tree
 - center-of-mass
 - force computation
 - push particles
- Problem size:
 - 1000 particles
- Parallelism profile of tree build phase similar to that of DMR
 - why?

Organization of talk

- Seemingly unrelated parallel algorithms and data structures
 - Stencil codes
 - Delaunay mesh refinement
 - Event-driven simulation
 - Graph reduction of functional languages
 -
- Unifying abstractions
 - Operator formulation of algorithms
 - Amorphous data-parallelism
 - Galois programming model
 - Baseline parallel implementation
- Specialized implementations that exploit structure
 - Structure of algorithms
 - Optimized compiler and runtime system support for different kinds of structure
- Ongoing work

Structure in irregular algorithms

- Baseline implementation is general but usually inefficient
 - (eg) dynamic scheduling of iterations is not needed for stencil codes since grid structure is known at compile-time
 - (eg) hand-written parallel implementations of DMR do not buffer updates to neighborhood until commit point
- Efficient execution requires exploiting structure in algorithms and data structures
- How do we talk about structure in algorithms?
 - Previous approaches: like descriptive biology
 - Mattson et al book
 - Parallel programming patterns (PPP): Snir et al
 - Berkeley motifs: Patterson, Yelick, et al
 - ...
 - Our approach: like molecular biology
 - structural analysis of algorithms
 - based on amorphous data-parallelism framework

Structural analysis of irregular algorithms

Jacobi: topology: grid, operator: local computation, ordering: unordered

DMR, graph reduction: topology: graph, operator: morph, ordering: unordered

Event-driven simulation: topology: graph, operator: local computation, ordering: ordered

Cautious operators (PPoPP 2010)

- Cautious operator implementation:
 - reads all the elements in its neighborhood before modifying any of them
 - (eg) Delaunay mesh refinement
- Algorithm structure:
 - cautious operator + unordered active elements
- Optimization: optimistic execution w/o buffering
 - grab locks on elements during read phase
 - conflict: someone else has lock, so release your locks
 - once update phase begins, no new locks will be acquired
 - update in-place w/o making copies
 - zero-buffering
 - note: this is not two-phase locking

Eliminating speculation

- Coordinated execution of activities:
 - if we can build dependence graph
 - early binding of scheduling decisions
- Binding times
 - Run-time scheduling:
 - cautious operator + unordered active elements
 - execute all activities partially to determine neighborhoods
 - create interference graph and find independent set of activities
 - execute independent set of activities in parallel w/o synchronization
 - Just-in-time scheduling:
 - local computation + topology-driven (eg) tree walks, sparse MVM
 - inspector-executor approach
 - Compile-time scheduling:
 - previous case + graph is known at compile-time (eg) Jacobi
 - make all scheduling decisions at compile-time time

DMR Results

DMR Statistics

Barnes-Hut

- Optimization
 - static parallelization of particlepushing
 - 90+ % of execution time
 - Galois runtime system but conflict-checking is turned off
- SPLASH-2 C implementation:
 - · same scaling
 - roughly twice as fast (Java vs. C)
- Shows that static parallelization can be viewed as early-binding of scheduling decisions

Andersen-style points-to analysis

- Algorithm formulation
 - solution to system of set constraints
 - 3 graph rewrite rules
 - speedup algorithm by collapsing cycles in constraint graph
- State of the art C++ implementation
 - Hardekopf & Lin
 - red lines in graphs
- "Parallel Andersen-style points-to analysis" Mendez-Lojo et al (OOPSLA 2010)

Ongoing work

- System building
 - current version of Galois, Lonestar, ParaMeter: http://iss.ices.utexas.edu/galois
 - ordered algorithms
- Algorithm studies:
 - other kinds of structure
 - intra-operator parallelism
 - locality
- Application studies
 - case studies of hand-optimized codes
- Compiler analysis
 - analyze and optimize code for operators
- Specializing data structure implementations to particular algorithms
 - can this be done semi-automatically?

Related work

- Transactional memory (TM)
 - Programming model:
 - TM: explicitly parallel (threads)
 - transactions: synchronization mechanism for threads
 - mostly memory-level conflict detection
 - Galois: Joe programs are sequential OO programs
 - ADT-level conflict detection
 - Where do threads come from?
 - TM: someone else's problem
 - Galois project: focus on sources of parallelism in algorithm
- Thread-level speculation
 - Programming model:
 - Galois: separation between ADT and its implementation is critical
 - permits separation of Joe and Stephanie layers (cf. relational databases)
 - permits more aggressive conflict detection schemes like commutativity relations
 - TLS: FORTRAN/C, so no separation between ADT and implementation
 - Programming model:
 - Galois: don't-care non-determinism plays a central role
 - TLS: FORTRAN/C, so only ordered algorithm

<u>Summary</u>

- Ourrent approach
 - 1. Static parallelization is the torm
 - Inspector-executor, optimistic parallelization, etc.
 - needed only for weird programs, crutch for dumb programmers
 - they are expensive: (eg) high abort ratio
 - 3. Dependence graphs are the right abstraction for parallelism
 - program-centric abstraction

Galois approach

- 1. Optimistic parallelization is the baseline
- Static parallelization, inspector-executor etc.
 - possible only for weird programs, poly-binding of schedulations,
 - overcolors of optimistic paralelization can be controlled
- Operator formulation of algorithms is the right abstraction
 - data-centric abstraction

Science of Parallel Programming

Seemingly unrelated algorithms

Unifying abstractions

Specialized models that exploit structure