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Problem StatementProblem Statement
• Community has worked on parallel 

programming for more than 30 yearsprogramming for more than 30 years
– programming models
– machine models
– programming languages
– ….

• However, parallel programming is still a 
research problem 

– matrix computations, stencil computations, 
FFTs  etc. are well-understood

– few insights for irregular applications 
• each new application is a “new 

phenomenon”
• Thesis: we need a science of parallel 

programmingprogramming
– analysis: framework for thinking about 

parallelism in application
– synthesis: produce an efficient parallel 

implementation of application “The Alchemist” Cornelius Bega (1663)implementation of application



Analogy: science of electro-magnetism

Seemingly Specialized modelsSeemingly 
unrelated phenomena Unifying abstractions

Specialized models
that exploit structure



Organization of talkOrganization of talk
• Seemingly unrelated parallel algorithms 

d d t t tand data structures
– Stencil codes
– Delaunay mesh refinement
– Event-driven simulation

G h d i f f i l l– Graph reduction of functional languages
– ………

• Unifying abstractions
– Operator formulation of algorithms
– Amorphous data-parallelism
– Galois programming model
– Baseline parallel implementation 

• Specialized implementations that exploit 
structure

– Structure of algorithms
– Optimized compiler and runtime system 

support for different kinds of structure
O i k• Ongoing work



Seemingly unrelatedSeemingly unrelated 
algorithmsg



Examples
Application/domain Algorithm

Meshing Generation/refinement/partitioningg p g

Compilers Iterative and elimination-based 
dataflow algorithms

Functional interpreters Graph reduction, static and dynamic 
dataflow

Maxflow Preflow-push, augmenting paths
Minimal spanning trees Prim, Kruskal, Boruvka
Event-driven simulation Chandy-Misra-Bryant, Jefferson 

Timewarp
AI Message-passing algorithms

Stencil computations Jacobi, Gauss-Seidel,                    
red-black ordering

Data-mining Clustering



Stencil computation: Jacobi iteration
• Finite-difference method for solving pde’s

– discrete representation of domain: grid
• Values at interior points are updated using values at 

neighbors
– values at boundary points are fixed 

• Data structure: 
– dense arrays

• Parallelism: 
values at next time step can be computed simultaneously– values at next time step can be computed simultaneously

– parallelism is not dependent on runtime values
• Compiler can find the parallelism

– spatial loops are DO-ALL loops

A A

//Jacobi iteration with 5-point stencil
//initialize array A
for time = 1, nsteps

Jacobi iteration, 5-point stencil

At At+1

for <i,j> in [2,n-1]x[2,n-1]
temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

for <i,j> in [2,n-1]x[2,n-1]:
A(i,j) = temp(i,j)



Delaunay Mesh Refinement
• Iterative refinement to remove badly 

shaped triangles:
while there are bad triangles do {

Pick a bad triangle;
Fi d it it

Mesh m = /* read in mesh */
WorkList wl;
wl.add(m.badTriangles());
while (true) { Find its cavity;

Retriangulate cavity; 
// may create new bad triangles

}

• Don’t-care non-determinism:

while (true) {
if ( wl.empty() ) break;

Element e = wl.get(); 
if (e no longer in mesh) continue;

– final mesh depends on order in which bad 
triangles are processed

– applications do not care which mesh is 
produced

• Data structure:

Cavity c = new Cavity(e);//determine new cavity
c.expand();
c.retriangulate();//re-triangulate region
m update(c);//update meshData structure: 

– graph in which nodes represent triangles 
and edges represent triangle adjacencies

• Parallelism: 
– bad triangles with cavities that do not 

m.update(c);//update mesh
wl.add(c.badTriangles());

}
g

overlap can be processed in parallel
– parallelism is dependent on runtime values

• compilers cannot find this parallelism 
– (Miller et al) at runtime, repeatedly build 

interference graph and find maximalinterference graph and find maximal 
independent sets for parallel execution



Event-driven simulation
• Stations communicate by sending 

messages with time-stamps on FIFO 
channels

• Stations have internal state that is 
updated when a message is processed

• Messages must be processed in time-
order at each station

• Data structure:
M i t t d i ti– Messages in event-queue, sorted in time-
order

• Parallelism: 
– activities created in future may interfere 

with current activities 
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static parallelization and interference graph 
technique will not work

– Jefferson time-warp
• station can fire when it has an incoming 

message on any edge
• requires roll back if speculative conflict is
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• requires roll-back if speculative conflict is 
detected

– Chandy-Misra-Bryant
• conservative event-driven simulation
• requires null messages to avoid deadlock



Remarks on algorithms
• Algorithms:

– parallelism can be dependent on runtime values
• DMR, event-driven simulation, graph reduction,….

– don’t-care non-determinism
• nothing to do with concurrency
• DMR, graph reduction, g p

– activities created in the future may interfere with current activities
• event-driven simulation…

• Data structures:
relatively few algorithms use dense arrays– relatively few algorithms use dense arrays

– more common: graphs, trees, lists, priority queues,…
• Parallelism in irregular algorithms is very complex

– static parallelization usually does not workp y
– dependence graphs are the wrong abstraction
– finding parallelism: most of the work must be done at runtime



Organization of talkOrganization of talk
• Seemingly unrelated parallel algorithms 

d d t t tand data structures
– Stencil codes
– Delaunay mesh refinement
– Event-driven simulation

G h d i f f i l l– Graph reduction of functional languages
– ………

• Unifying abstractions
– Operator formulation of algorithms
– Amorphous data-parallelism
– Baseline parallel implementation for 

exploiting amorphous data-parallelism
• Specialized implementations that exploit 

str ct restructure
– Structure of algorithms
– Optimized compiler and runtime system 

support for different kinds of structure
• Ongoing work• Ongoing work



Unifying abstractions

• Should provide a model of parallelism in 
i l l ithirregular algorithms

• Ideally, unified treatment of parallelism in regular 
and irregular algorithmsand irregular algorithms
– parallelism in regular algorithms should emerge as a 

special case of general model
– (cf ) correspondence principles in Physics– (cf.) correspondence principles in Physics

• Abstractions should be effective
– should be possible to write an interpreter to execute 

l ith i ll lalgorithms in parallel
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Operator formulation of algorithms
f• Algorithm formulated in data-centric terms

– active element: 
• node or edge where computation is needed

– DMR: nodes representing bad triangles
E t d i i l ti t ti ith i i– Event-driven simulation: station with incoming 
message

– Jacobi: nodes of mesh
– activity:

• application of operator to active element
– neighborhood:

• set of nodes and edges read/written to perform 
computation

– DMR: cavity of bad triangle
Event driven simulation: station– Event-driven simulation: station

– Jacobi: nodes in stencil
• distinct usually from neighbors in graph

– ordering: 
• order in which active elements must be executed in a 

ti l i l t ti
: active node

sequential implementation
– any order (Jacobi,DMR, graph reduction)
– some problem-dependent order (event-driven 

simulation)
• Amorphous data-parallelism

: neighborhood

– active nodes can be processed in parallel, subject to
• neighborhood constraints
• ordering constraints



Galois programming model (PLDI 2007)

• Joe programmers 
– sequential, OO model q ,
– Galois set iterators: for iterating over 

unordered and ordered sets of active 
elements

• for each e in Set S do B(e)
– evaluate B(e) for each element in set S

Mesh m = /* read in mesh */
Set ws;
ws.add(m.badTriangles()); // initialize ws

f h t i S t d { // d d S t it t– evaluate B(e) for each element in set S
– no a priori order on iterations
– set S may get new elements during 

execution
• for each e in OrderedSet S do B(e)

– evaluate B(e) for each element in set S

for each tr in Set ws do { //unordered Set iterator        
if (tr no longer in mesh) continue;
Cavity c = new Cavity(tr);
c.expand();
c.retriangulate();( )

– perform iterations in order specified by 
OrderedSet

– set S may get new elements during 
execution

• Stephanie programmers

g ();
m.update(c);
ws.add(c.badTriangles()); //bad triangles 

}

• Stephanie programmers
– Galois concurrent data structure library 

• (Wirth) Algorithms + Data structures = 
Programs

DMR using Galois iterators

Programs
– (cf) database programming



Galois parallel execution model

main()
Master

• Parallel execution model:
– shared-memory
– optimistic execution of Galois 

iterators main()
….
for each …..{

iterators
• Implementation:

– master thread begins execution of 
program 

h it t it t k
i1

i3

…….
…….
}

– when it encounters iterator, worker 
threads help by executing  
iterations concurrently

– barrier synchronization at end of 
iterator

i2
i4

C t

.....iterator
• Independence of neighborhoods:

– logical locks on nodes and edges
– implemented using CAS operations

i5

Concurrent 
Data structure

Joe Program• Ordering constraints for ordered set 
iterator:

– execute iterations out of order but 
commit in order

– cf. out-of-order CPUs



Parameter tool (PPoPP 2009)Parameter tool (PPoPP 2009)
• Measures amorphous data-parallelism inMeasures amorphous data parallelism in 

irregular program execution
• Idealized execution model:

– unbounded number of processors
– applying operator at active node takes one time step
– execute a maximal set of active nodes
– perfect knowledge of neighborhood and ordering 

constraintsconstraints
• Useful as an analysis tool



Example: DMRExample: DMR
• Input mesh:p

– Produced by Triangle 
(Shewchuck)

– 550K triangles
R hl h lf b dl– Roughly half are badly 
shaped

• Available parallelism:
How many non conflicting– How many non-conflicting 
triangles can be expanded 
at each time step?

• Parallelism intensity:y
– What fraction of the total 

number of bad triangles 
can be expanded at each 
step?
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step?



Example:Barnes-HutExample:Barnes Hut
• Four phases:p

– build tree
– center-of-mass

force computation– force computation
– push particles

• Problem size:
– 1000 particles

• Parallelism profile of tree 
build phase similar to thatbuild phase similar to that 
of DMR
– why?



Organization of talkOrganization of talk
• Seemingly unrelated parallel algorithms 

d d t t tand data structures
– Stencil codes
– Delaunay mesh refinement
– Event-driven simulation

G h d i f f i l l– Graph reduction of functional languages
– ………

• Unifying abstractions
– Operator formulation of algorithms
– Amorphous data-parallelism
– Galois programming model
– Baseline parallel implementation

• Specialized implementations that exploit 
structure

– Structure of algorithms
– Optimized compiler and runtime system 

support for different kinds of structure
O i k• Ongoing work



Structure in irregular algorithms

• Baseline implementation is general but usually inefficient
– (eg) dynamic scheduling of iterations is not needed for stencil codes(eg) dynamic scheduling of iterations is not needed for stencil codes 

since grid structure is known at compile-time
– (eg) hand-written parallel implementations of DMR do not buffer 

updates to neighborhood until commit point
• Efficient execution requires exploiting structure in algorithms andEfficient execution requires exploiting structure in algorithms and 

data structures
• How do we talk about structure in algorithms?

– Previous approaches: like descriptive biology
• Mattson et al book
• Parallel programming patterns (PPP): Snir et al 
• Berkeley motifs: Patterson, Yelick, et al
• …

– Our approach: like molecular biology
• structural analysis of algorithms
• based on amorphous data-parallelism framework



Structural analysis of irregular algorithms
general graph

topology

general graph

grid

tree
fi t

morph

refinement

coarsening

general

t l d i
irregular
algorithms operator local computation

topology-driven

data-driven

reader

unordered
ordering

ordered

Jacobi: topology: grid operator: local computation ordering: unorderedJacobi: topology: grid, operator: local computation, ordering: unordered
DMR, graph reduction: topology: graph, operator: morph, ordering: unordered
Event-driven simulation: topology: graph, operator: local computation, ordering: ordered



Cautious operators (PPoPP 2010)

• Cautious operator implementation:
– reads all the elements in its neighborhood– reads all the elements in its neighborhood 

before modifying any of them
– (eg) Delaunay mesh refinement

• Algorithm structure:
ti t d d ti– cautious operator + unordered active 

elements
• Optimization: optimistic execution w/o 

buffering 
– grab locks on elements during read phase

• conflict: someone else has lock, so release 
your locks

– once update phase begins, no new locks g
will be acquired 

• update in-place w/o making copies
• zero-buffering

– note: this is not two-phase lockingp g



Eliminating speculation

• Coordinated execution of activities: 
– if we can build dependence graph 
– early binding of scheduling decisions

Bi di ti• Binding times
– Run-time scheduling: 

• cautious operator + unordered active elements
• execute all activities partially to determine neighborhoods
• create interference graph and find independent set of activities
• execute independent set of activities in parallel w/o synchronization

– Just-in-time scheduling:
• local computation + topology-driven (eg) tree walks, sparse MVM
• inspector-executor approach

– Compile-time scheduling: p g
• previous case + graph is known at compile-time (eg) Jacobi
• make all scheduling decisions at compile-time time



DMR ResultsDMR Results

Problem size: 0.5M triangles, 0.25M bad triangles
Machine: Intel Nehalem, 2 Quad-core processors 

•Serial time: 17002 ms
•Best // time: 3745 ms
•Best speedup: 4.5X
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DMR Statistics
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Barnes-Hut

• Optimization
– static parallelization of particle-

pushingpushing 
• 90+ % of execution time

– Galois runtime system but 
conflict-checking is turned off

SPLASH 2 C i l t ti• SPLASH-2 C implementation:
• same scaling
• roughly twice as fast (Java vs. C)

• Shows that static parallelization
Sun Niagara-2

Shows that static parallelization 
can be viewed as early-binding 
of scheduling decisions

Nehalem



Andersen-style points-to analysis

• Algorithm formulation
– solution to system of set 

constraints
– 3 graph rewrite rules

speedup algorithm by– speedup algorithm by 
collapsing cycles in 
constraint graph

• State of the art C++ 
i l t tiimplementation
– Hardekopf & Lin
– red lines in graphs

“P ll l A d t l• “Parallel Andersen-style 
points-to analysis” Mendez-
Lojo et al (OOPSLA 2010)



Ongoing work
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• System building
– current version of Galois, Lonestar, ParaMeter: http://iss.ices.utexas.edu/galois
– ordered algorithms

Al ith t di• Algorithm studies:
– other kinds of structure 
– intra-operator parallelism
– localitylocality

• Application studies
– case studies of hand-optimized codes

• Compiler analysis
– analyze and optimize code for operators

• Specializing data structure implementations to particular algorithms
– can this be done semi-automatically?



Related work
• Transactional memory (TM)

– Programming model:
• TM: explicitly parallel (threads)

– transactions: synchronization mechanism for threadsy
– mostly memory-level conflict detection 

• Galois: Joe programs are sequential OO programs
– ADT-level conflict detection

– Where do threads come from?
• TM: someone else’s problem 
• Galois project: focus on sources of parallelism in algorithm

• Thread-level speculation
– Programming model:Programming model: 

• Galois: separation between ADT and its implementation is critical
– permits separation of Joe and Stephanie layers (cf. relational databases)
– permits more aggressive conflict detection schemes like commutativity relations

• TLS: FORTRAN/C, so no separation between ADT and implementation

– Programming model:
• Galois: don’t-care non-determinism plays a central role 
• TLS: FORTRAN/C, so only ordered algorithm
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Summary

• Current approach
1 Static parallelization is the

• Galois approach
1 Optimistic parallelization is1. Static parallelization is the 

norm
2. Inspector-executor, optimistic 

parallelization, etc. 

1. Optimistic parallelization is 
the baseline

2. Static parallelization, 
inspector-executor etc.
• possible only for weird• needed only for weird 

programs, crutch for dumb 
programmers

• they are expensive: (eg) high

• possible only for weird 
programs, early-binding of 
scheduling decisions, 

• overheads of optimistic 
parallelization can bethey are expensive: (eg) high 

abort ratio
3. Dependence graphs are the 

right abstraction for 
parallelism

parallelization can be 
controlled

3. Operator formulation of 
algorithms is the right 
abstractionparallelism

• program-centric abstraction
• data-centric abstraction



Science of Parallel Programming

i1
i3

i2
i4

2 A B
i5

Specialized models

……..

Seemingly 
unrelated algorithms

Unifying abstractions
Specialized models

that exploit structure


