
Language Support for Linux
Device Driver Programming

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Günter Anton Khyo
Matrikelnummer 0326024

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Prof. Dr. Dipl.-Ing. M. Anton Ertl

Wien, 30.03.2011
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Günter Anton Khyo

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fallunter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

The success of any commodity operating system is determinedby the quality of device driver
support. Over the last decades, the computer hardware industry has been advancing at a rapid
pace, putting high pressure on device driver developers. About 52% of the Linux kernel code
is comprised by device drivers, accounting for close to 7.4 million lines of code. While man-
aging such a huge code base is a challenge on its own, Linux device driver developers have to
overcome additional obstacles. The complex, multithreaded programming model of the kernel
creates a high potential for bugs and many of them result in kernel crashes. Device drivers con-
stitute the largest and most unreliable component of the kernel.
This thesis analyses the root causes of the device driver reliability problem, and demonstrates
how the current driver programming model can be improved to assist programmers in creating
better driver code. To examine and test feasible improvements, a prototype language (called
CiD) based on a subset of C was designed with the special requirements on Linux device
driver development in mind. CiD features syntactical additions for three essential device driver
code aspects: concurrency, synchronization and hardware communication. The compiler is pro-
grammed with basic rules of the concurrency model of the kernel and is able to detect simple but
common mistakes that lead to deadlocks. Additional consistency checks support the program-
mer in generating correct hardware I/O code.
Two device drivers have been converted into CiD code to test the language extensions and the
implementation of the compiler. The results for concurrency and synchronization are satis-
fying: race conditions in the data-flow are reported with a false positive rate of 6% to 21%.
The compiler also generates correct concurrency and synchronization code, thus mitigating the
potential for deadlocks. The results show that hardware I/Ogenerator leaves much room for
improvement, since it generates 1.5 times more I/O operations than the original driver. Related
approaches show that further optimizations can reduce the gap.
In conclusion, we find that device driver programming can be made more robust with only minor
alterations to the existing programming model and little compiler complexity.

iii

Kurzfassung

Die immer rasanter fortschreitende Entwicklung der Computerhardwareindustrie macht die Geräte-
treiberentwicklung zu einer großen, wenn nicht der größten, Herausforderung in der Betriebssys-
tementwicklung. Der aktuelle Linuxkernel umfasst mittlerweile 7.4 Millionen Zeilen Geräte-
treibercode, das sind in etwa 52% des Gesamtcodes. Während die Wartung von Gerätetreibern
durch die enorme Codegröße zu einer Herausforderung wird, ist schon die Entwicklung eines
einzelnen Gerätetreibers oftmals eine schwierige Angelegenheit. Neben der prinzipiellen Schwierig-
keit von hardwarenaher Programmierung, verkompliziert das zugrundeliegende Programmier-
modell die Treiberentwicklung. So ist Gerätetreibercode unter Linux hochgradig nebenläu-
fig, wobei Programmierer auf zusätzliche Linux-spezifischeRegeln achten müssen, um häufig
auftrentede Fehler, wie Deadlocks und Race Conditions zu vermeiden. Gerätetreiber sind somit
die unzuverlässigste Komponente des Kernels.
Im Zuge dieser Arbeit wurde CiD, eine Erweiterung der Programmiersprache C, sowie der zuge-
hörige Compiler, implementiert, um die Gerätetreiberentwicklung robuster zu gestalten. CiD bi-
etet Sprachkonstrukte für Nebenläufigkeit, Synchronisation und Hardwarekommunikation. Der
Compiler wurde mit Regeln des Treiberprogrammiermodells versehen, um häufig auftretende
Fehler wie z.B. Deadlocks während der Entwicklung zu erkennen.
Um die Sprache und den Compiler zu testen, wurden zwei Gerätetreiber konvertiert. Die Ergeb-
nisse sind großteils zufriedenstellend: Race conditions im Datenfluss eines Treibers werden
mit einer “False-Positive“-Rate von 6% bis 21% erkannt. Durch die korrekte Generierung von
Synchronisationscode werden häufig auftretende Ursachen für Deadlocks vermieden. Die Hard-
warekommunikation bedarf einer Überarbeitung: Der Codegenerator erzeugt zwar korrekten
Code, allerdings werden 1.5 mal mehr Hardwareoperationen im Vergleich zum ursprünglichen
Code erzeugt. Verwandte Arbeiten zeigen jedoch, dass zukünftige Verbesserungen möglich sind.
Zusammenfassend lässt sich das Programmiermodell mit einfachen Mitteln robuster gestalten,
wobei der Implementierungsaufwand für die Erweiterungen sehr moderat ist.

v

Acknowledgements

Writing this thesis has been a tremendous experience and marks the end of a very difficult but
fruitful period in my life. The lessons I learnt when writingthis thesis are invaluable and will
guide me through the rest of my professional and personal life.
I would like to thank my supervisor Anton Ertl for his counseland encouragement, and, espe-
cially for his unlimited patience. I could always rely on him. Also, I would like to thank Leonid
Ryzhyk who encouraged me to pursue my project and who offeredcounsel.
Last but not least, I would like to thank my parents and grandparents for giving me continous
and unconditional support for my thesis. Without them, I would have never finished my studies.

Günter Anton Khyo
Vienna, April, 2011

vii

Contents

Contents 1

List of Figures 2

List of Tables 3

1 Introduction 5

2 Linux Device Drivers 7
2.1 What Are Device Drivers? .. 7
2.2 A Simple Device Driver Model .. . 8
2.3 The Linux Device Driver Architecture 10
2.4 The Linux Device Driver Programming Model 11
2.5 Further Reading .19

3 The Device Driver Reliability Problem 21
3.1 Device Protocol Violations 21
3.2 Operating System Protocol Violations 23
3.3 Programming Model Weaknesses 25
3.4 Towards Solving the Reliability Problem 31

4 The CiD Programming Language 33
4.1 Basic Language Design .. 33
4.2 Support for Code Reuse .. 35
4.3 Support for Concurrency and Synchronization 36
4.4 Support for Hardware I/O .. . 45
4.5 Implementation .50

5 Experimental Evaluation 55
5.1 Methodology . 55
5.2 Concurrency and Synchronization 56
5.3 Hardware I/O . 61
5.4 Code Reuse and Separation of Concerns 63
5.5 Compiler Complexity .. 64

1

5.6 Limitations . 64

6 Related Work 65
6.1 Device Driver Architectures 66
6.2 Domain-specific Languages 73
6.3 Other Technologies .. 79

7 Conclusion 81
7.1 Brief Summary and Review of Results 81
7.2 Future Directions .. 82
7.3 Lessons Learned . 84
7.4 Compiler Availability 85

Bibliography 87

List of Figures

2.1 Top-down view of the data flow between an application, theunderlying operating
system, the device driver and its associated device. 8

4.1 Kernel locking primitives and their uses in device drivers. Spinlocks and mutexes
are the most commonly used lock types. 44

5.1 Compiler-generated conflict graph of the 8139C+ driver.Blue boxes represent driver
entry points, red edges denote unsynchronized data paths. 57

6.1 Structure of the user-space driver architecture by Leslie et al [Leslie et al., 2005]. . 67
6.2 Decaf Drivers Architecture (adopted from [Renzelmann and Swift, 2009]). 68
6.3 Lifecycle state machine (adopted from [Ryzhyk et al., 2009a]). 70

2

List of Tables

3.1 Types of concurrency faults in device drivers (adopted from [Ryzhyk et al., 2009a]). 26

4.1 Atomic code patterns the CiD compiler recognizes, and their transformations. . . . 46
4.2 Data-layout of the SCSI_WRITE12 command 47
4.3 Overview of the most important compiler source files. 51
4.4 Results of the concurrency analysis for the program in Listing 4.12 53

5.1 Statistics on concurrency and synchronization obtained with the CiD compiler . . . 56
5.2 Code statistics of the converted and original drivers. 61

3

CHAPTER 1
Introduction

Due to the enormous growth of the computer hardware industryand the massive proliferation of
computer devices, device driver development advances at a very fast pace. A recent publication
of the Linux Foundation reports that the code size of the kernel increased by over 70% in only
5 years (from the year 2004 to 2009) [Kroah-Hartman et al., 2009]. The latest Linux kernel
version 2.6.37 now includes close to 14 million lines of code. Device drivers constitute about
7.4 million lines of code, accounting for 52% of the kernel source code.
While the number of available of Linux device drivers is rising at an enormous rate, the relia-
bility of device drivers has been of particular concern in the OS research community. Device
drivers have a bad reputation for being unreliable, and, according to numerous investigations,
are held responsible for the majority of (operating) systemcrashes [Ryzhyk et al., 2009a, Herder
et al., 2009, Renzelmann and Swift, 2009]. In 2001, Chou et al. revealed in a detailed study on
operating system errors, that the bug density of Linux device drivers is up toseventimes higher
than in all other OS components [Chou et al., 2001].
Device driver programming is challenging: hardware protocols are steadily increasing in com-
plexity, but also the kernel and its driver interfaces are under constant change. In addition, the
complex multithreaded Linux device driver programming model puts a heavy burden on pro-
grammers (Chapter 2 provides a short overview of driver programming essentials). An analysis
of the root causes for device driver defects reveals that support for essential driver aspects such
as concurrency and hardware I/O is very limited (see Chapter3, “The Device Driver Reliability
Problem”).
This motivates the development of the CiD (C for Drivers) programming language which offers
language-support for concurrency and hardware I/O (see Chapter 4). Unlike other research ap-
proaches (see Chapter 6), CiD does not change the driver programming paradigm, but shows
how language-support and static verification can aid the programmer in generating device driver
code. The proof of concept implementation comes with two converted CiD device drivers which
demonstrate that the language extensions and the compiler are powerful enough to detect race
conditions and to prevent simple, but common mistakes, thatlead to deadlocks (see Chapter 5).

5

CHAPTER 2
Linux Device Drivers

This chapter covers the essentials of Linux device driver programming. The basic architecture
of device drivers is explained with a simple model of the operating system and the underlying
hardware. The main focus of the discussion lies in the programming model of Linux device
drivers which is fundamentally different from that of user-space applications. Important aspects
such as concurrency, synchronization and memory management are discussed. The concepts
introduced in this chapter give an understanding of the special requirements on device driver
programming and the inner workings of a device driver.

2.1 What Are Device Drivers?

A device driver is a software component that controls the operations of a physical or virtual
device. Physical devices are actual hardware components and perform functions on behalf of
the user or operating system, for example capturing audio orprinting a file. Virtual devices
have no physical representation and only exist in software,but are as useful as physical devices.
Examples of common used virtual devices are RAM disks, software RAIDs, virtual network
adapters and so on.
It is helpful to categorize devices that offer the same set offeatures into device classes. The
actualmechanismsthat realize the interface of a class are encapsulated in the corresponding
device driver. This enables operating systems to treat all devices that belong to the same class in
a uniform way. Applications and other parts of the operatingsystem can then issue requests to
a device via its device class interface without knowing anything about the details of the device
chipset. A device driver can be seen as an interpreter which translates class-specific requests
into actual device-specific commands.
Device drivers are not restricted to the handling of a singledevice, in fact, many device drivers
are capable of handling multiple devices belonging to the same device class. For example, a
single generic USB input driver may handle a wide range of (connected) input devices like
mice, joysticks or keyboards at the same time.

7

2.2 A Simple Device Driver Model

Figure 2.1 depicts a simple model that illustrates the data flow between a UNIX-style operating
system, a device driver and its associated device.

Figure 2.1: Top-down view of the data flow between an application, the underlying operating
system, the device driver and its associated device.

One of the key philosophies of the UNIX operating system is that "‘everything is a file"’.
Linux, being a UNIX derivate, also embodies this idea. Applications can gain access to a par-
ticular device by invoking generic I/O operations on the filethat represents that device. For
example, the output data of a mouse can be retrieved by reading the/dev/input/mouse file
on any recent Linux system. In practice, the philosophy is not always obeyed. For example,
network devices are not represented as files but asinterfaces, and thus, requests do not pass
the VFS. The same is also true for configuration requests thatchange the operational parameters

8

of a device. For the remainder of the discussion, we assume that requests are passed through the
file system. When starting a file operation, the application has to make use of the system call
interface. When issuing the system call, a mode switch into kernel mode is performed and the re-
quest is further passed to the virtual file system. Every file has an associated driver identifier (the
major numberof the device), that points to the actual driver of the device. The request is then
passed to the found device driver. The device driver then translates the request into a device-
specific command. The controller of a device is responsible for translating device commands
into electrical signals. For example, a hard-drive-disk controller translates seek operations into
mechanical movements of the disk arm(s). Access to the actual hardware is supported by the
Hardware Abstraction Layer (HAL). The HAL provides supportfor low-level hardware facili-
ties like DMA, device I/O and interrupt handling.
How devices are accessed is dependent on the bus1 the device is connected to. For example,
devices that connect to USB function significantly different than devices that are attached to the
PCI bus family even if they belong to the same device class.
Both, the controller and the device driver, have to keep track of device state. When an applica-
tion issues a request to a device, the device driver must ensure that the device is in the correct
state to process the request – or issue an error. Aprotocolspecifies how and when device func-
tions can be invoked, what their parameters are and what kindof response can be expected at
which time. In this context, the word function is used in a very liberal sense. The invocation
of a device driver function can be as simple as reading a register or involve sending a series of
well-formatted commands to the controller.
The device driver and the controller have to handle these details. Device protocols are written
informally and can be found in the data-sheet of the device (if there is one available). In addi-
tion, device driver developers also have to pay attention tobus protocols. While USB defines
a message-oriented communication model, communication with a PCI device is achieved by
register I/O operations. The corresponding standards define message types and register layouts
respectively. Therefore, device communication can be either message-based or register-based.
Also, since device drivers closely work together with the kernel and use kernel services, they
also have to obey protocols imposed by the operating system.
In theory, I/O operations can be implemented synchronously. However, compared to processor
speed, I/O operations are very slow. In order to avoid wasting processor resources, I/O transfers
are usually carried out by a DMA (Direct Memory Access) controller. Completion of an I/O
operation is usually signaled via an interrupt. Similarly,network cards notify the driver when
new data has arrived. A device driver also has to deal with hotplugging events which can occur
at any time. Therefore, device drivers execute in aconcurrent environmentand are typically
realized as multithreaded programs.
In summary, following important observations on device drivers have been made:

• Device drivers implement hardware abstractions by hiding internal device details

• Device drivers implement device and operating system protocols

1For simplicity, the term bus is used to denote the concept of adata-path connected to a device, not the actual
topology.

9

• Device drivers execute in a concurrent environment

2.3 The Linux Device Driver Architecture

The Linux device driver architecture supports a huge variety of devices and busses. Due to
the vastness of the architecture, it is impossible to address all important details and subsystems.
However, every device driver author should have knowledge about the three basic device classes:

• Character devices

• Block devices

• Network devices

Every character and block device is represented as a file system entry in the/dev directory.
I/O on a block or character device is performed by accessing the corresponding file and per-
forming standard file operations such asopen, close, read andwrite. Character devices
arestream-orientedand carry out I/O transfers on a byte level. Examples of physical character
devices are input devices, sound cards, serial and parallelports. Well-known virtual character
devices are the random number generators/dev/rand and/dev/urand.
Block devices areblock-orientedand process data in fixed-size multiples of a byte, called a
block. In contrast to character devices, I/O operations on block devices are buffered for per-
formance reasons. The central data-structure of block devices is the request queue which is
typically ordered by an I/O scheduler to satisfy performance or fairness criteria. Storage devices
like hard disk drives, USB drives, card readers are examplesof block devices. Useful virtual
block devices are RAM disks (most Linux distributions host them under/dev/ram[0..N])
and virtual storage drives for mounting image files. Also, read and write requests are usually
processed and (possibly) reordered by an I/O scheduler according to a
Unlike block and character devices, network, devices do nothave an entry in the/dev/ direc-
tory. Instead, they are represented as interfaces which canbe accessed with tools likeifconfig.
The fundamental data-structure of network devices is the socket buffer (struct sk_buff)
which holds packets for transmission or reception. The basic task of a network driver is to hand
over socket buffers for transmission to the controller, andto convert received packets into socket
buffers. Details about the network protocol are handled by upper layers.
Apart from character, block and network devices, the Linux architecture supports all kinds of
devices ranging from CPU voltage regulators to graphics cards. In addition, the Linux kernel
provides APIs for accessing all common device busses (USB, PCI, I2C) and supports commu-
nication protocols such as SCSI, SATA or Bluetooth. Also, there are numerous subsystems
that provide low-level drivers which handle core aspects ofdevice classes and leave the de-
tails to high-level drivers. Examples are the input subsystem, sound subsystem and USB device
class subsystems such asusb2serial or usb2ethernet. The driver architecture is being
steadily improved and extended with more support for all kinds of devices.

10

User-Space Drivers versus Kernel-Space Drivers

In Linux, device drivers typically execute in kernel-spaceas part of the kernel. Writing kernel-
space drivers can be considered as a challenge because the underlying programming model is
rather complex, under constant change, and unforgiving to bugs. Programming faults may easily
manifest as kernel crashes and debugging device drivers canbe difficult.
This essentially inspired the creation of the user-space I/O framework (UIO) which targets em-
bedded devices used in control engineering and process automation. The advantage of UIO is
that the programmer can (theoretically) implement a devicedriver with all available tools and
programming languages. However, UIO does not support performance critical devices such as
network interface controllers (NICs) or storage devices. Also, bootstrapping code such as in-
stalling interrupt handlers still has to be implemented in kernel-space. Overall, the capabilities
of UIO are rather limited.
Apart from UIO, programmers may also use libraries such aslibUSB to gain direct access to
devices, but again, the kernel has to offer user-space “bindings“ to the kernel subsystem that
handles the corresponding device class. Thus, libraries also do not offer a complete solution.
Because user-space support is very limited, the remainder of this chapter focuses on writing
kernel-space drivers.

2.4 The Linux Device Driver Programming Model

Because device drivers are part of the kernel, programmers have to be familiar with internal
mechanisms that are used throughout in the kernel. Concurrency, synchronization, memory
management and hardware I/O are the essential aspects and peculiarities of every device driver.
This section gives an overview on how these aspects are realized in the Linux kernel.

Kernel Modules and Driver Organization

Kernel-space device drivers are typically implemented askernel modules. Modules provide a
dynamic plug-in mechanism for kernel code and can be loaded into kernel-space and unloaded
at any time. The module concept is particularly useful in combination with hotplugging, which
enables device driver code to be loaded and unloaded on demand.
A module consists of three parts,

• an interface and data objects,

• an optional list of parameters, and

• meta-information.

The interface of a module can be divided into private and public functions. By default, a
module function is private and hidden from other modules. Ifthe programmer wishes to make
a function visible to other modules, the corresponding function prototype has to beexported
to the kernel symbol table with a special macro. Data objects, i.e., global variables can be
exported analogously. Once exported to the kernel symbol table, the function (or data object)

11

can be readily accessed by all other modules. This is useful for organizing subsystems layers of
modules. In Linux terminology, this is calledmodule stacking. Module stacking is also useful
for splitting device drivers into two parts: a high level driver that handles generic aspects of a
particular device class, and a low level driver that contains device specific code. For example,
the USB-to-serial module exploits this idea and offers a dedicated interface to various device
driver modules that handle different USB-to-RS232 converter chipsets.
Module parameters allow the programmer to make a module configurable. For example, a RAM
disk driver may export a parameter for the capacity which canbe set during loading by the user.
Every module contains a set of named attributes that describe important meta-information such
as author, description and code license. Programmers have to supply these information in the
corresponding source code by using macros.
Compilation and linking of modules is a simple process and just involves writing a special
Makefile which can be invoked with the well-knownmake command.

Device Driver Entry Points

Every device driver implements at least one interface that defines a set ofentry pointsat which
control to the device driver is transferred. For example, block and character device drivers im-
plement I/O interfaces that are invoked whenever a user performs I/O on the corresponding file
node.
At the implementation level, the device driver has to register its interface implementation with
the corresponding subsystem during run-time. Listing 2.1 shows a simple example that demon-
strates interface implementation and registration for a character device.

In general, interfaces are overridden by passing bindings for function pointers to to the cor-
responding subsystem. This is a common idiom (or workaround) for interface specialization in
C code. Interrupt handlers also define entry points and are handled in a similar way. The de-
vice driver simply registers the interrupt handler with thekernel by calling therequest_irq
function and passing the address of the handler.

Concurrency

The entry points of a device driver are typically invoked concurrently in an arbitrary order. Mul-
tiple processes might perform I/O on the same device, the device itself might raise an interrupt
which triggers the execution of an interrupt handler and with the advent of hotplugging, a device
can be disconnected at any time. In addition, since version 2.6, the kernel is now preemptive to
exploit symmetric multi-processing architectures which have become standard in today’s desk-
top computers. This means that device driver code can be preempted at any time, and may
execute on different processor cores at the same time. The Linux kernel does not protect the
device driver from concurrent device driver activity. It isup to the programmer to coordinate
activities and to synchronize shared data objects. To this end, the Linux driver API equips the
device driver programmer with numerous facilities for coordination and synchronization.

12

Listing 2.1: Implementation of driver entry points and device registration.

/* Implementation of read function */
static ssize_t
chrdev_read (struct file *file, char __user * buffer, size_t buffer_size,

loff_t* offset);

static const struct file_operations chrdev_fops = {
.owner = THIS_MODULE, /* Used by the kernel for reference counting */

/* Driver entry points. */
.read = chrdev_read,
.write = chrdev_write,
.open = chrdev_open,
.release = chrdev_release,

};

/* Ready entry point */
static ssize_t
chrdev_read (struct file *file, char __user * buffer, size_t buffer_size,

loff_t* offset)
{

printk("chrdev: read\n"); return 0;
}

/* ... Implementation of read, open, and release */

/*
Module initialization function
Allocate major and minor numbers, and register as a character device

*/
static int __init init(void)
{

if (alloc_chrdev_region(&major_number, 0, 1, DEV_NAME) < 0)
{

printk("Dynamic allocation of major number failed: ’%d!\n", num);
return -1;

}

cdev_init(&cdev_cmos_device, &chrdev_fops);
cdev_add(&cdev_cmos_device, major_number, 1);

return 0;
}

13

Execution Context

Every device driver function is associated with anexecution context. The execution context de-
termines the types of operations that are permitted within aparticular driver, or kernel, function.
There are three types of execution contexts:

1. process context

2. interrupt context

3. atomic context

When a user-space program issues a device operation throughthe system call interface, a
software interrupt transfers control to the kernel which then locates the device driver and calls
the corresponding driver function (for example theread function of a character device driver).
Because the request is being carried out on behalf of a process, the driver function executes in
process context. In process context, the calling process can be put into sleep if the operation
takes some time to finish. This happens on various occasions,for instance, when the driver calls
a blocking kernel function or when the device is busy performing another operation. Once the
device or driver is ready to process the I/O request, the process is woken again.
However, there are requests and events that are not associated with a particular process. For
example, device interrupts occur independently from user-space processes (even if there is a ca-
sual link) and are processed in interrupt handlers without abacking process. In interrupt context,
sleeping is forbidden because interrupt handlers are not part of any process and cannot be put to
sleep and resumed. Calling a blocking function in an interrupt handler results in a deadlock.
Similarly, there are other code paths in a device driver thatdo not permit sleeping. For example,
the I/O-request-queue handler of a block driver is protected with a special kind of lock (see next
section) that does not allow blocking function calls. Another example is the packet transmission
entry point (start_xmit) of a NIC driver which also executes in atomic context. The distinc-
tion between interrupt and atomic context is important for writing correct synchronization code,
and will be made clear in Chapter 4.

Synchronization

The Linux kernel offers various synchronization primitives that allow the programmer to protect
shared data and to coordinate concurrent driver activities.
In general, shared resources can be either protected with locks or lock-free operations. Lock-free
operations are used in special circumstances, usually to protect small data objects. For example,
simple objects that can be represented as numbers (such as reference counters) or bit flags can
be implemented as atomic variables. The Linux kernel offersthe typeatomic_t along with
operations that support concurrency-safe reading, writing and testing of single values. Atomic
operations are mapped to CPU instructions that guarantee atomic behavior.
Operations such as processing the elements of a request queue are more complex and may re-
quire locking. In general, the kernel offers blocking (semaphores) and non-blocking locking
(spinlocks) primitives. The choice depends on the execution contexts.If data is only shared

14

between functions with process context, then semaphores are the best choice. However, if the
data object is also accessed within an interrupt handler or within atomic context, then the pro-
grammer has to resort to non-blocking locks.Spinlocksrealize non-blocking behavior with busy
waiting. This puts an important constraint on code that is protected with a spinlock: it has to
finish quickly and it should not block. In the best case, calling a blocking operation with a spin-
lock leads so substantial system performance degradation,and in the worst case to a deadlock.
Another important factor that has to be considered is the performance of a locking scheme. Due
to the privileged role of device driver code, a single devicedriver might significantly slow down
the operating system with wasteful locking. The kernel features different variants of semaphores
and spinlocks that are optimized for reading or writing. Analyzing lock contention and read-to-
write ratio of shared data-objects is thus important in determining an optimal locking strategy.
In essence, implementing a correct locking scheme can be very tricky. Optimizations are even
more difficult and dangerous but crucial for performance-sensitive device drivers. In fact, stud-
ies on operating system errors show that concurrency-related bugs such as deadlocks are very
common in device driver code [Chou et al., 2001, Ryzhyk et al., 2009a]. More details about
locking are discussed in Chapter 4.
A device driver also has tocoordinateconcurrent activities. To this end, the kernel offerscom-
pletionsandwait queues. Completions provide a mechanism to wait for the completionof an
event, e.g., an I/O operation. While this can be also achieved with semaphores, there were many
cases of race conditions2, which motivated the introduction of the safer completion mechanism.
Internally, completions are implemented with wait queues,which are more powerful and allow
multiple processes to synchronize on events on a queue.

Interrupt Handling and Deferred Work

While an interrupt handler is executing, no other process orkernel code path can be active on
the local CPU at the same time. Thus, an interrupt handler should pass control back to the kernel
as fast as possible anddeferCPU-intensive work to a later point in time.
Conceptually, an interrupt handler can bedividedinto two parts: top- and bottom-half. The code
in the top-half constitutes the performance critical part and should terminate as soon as possible.
The bottom-half is scheduled at a later point in time, after the interrupt handler terminates and
includes code that may block or cause unacceptably high latencies. For example, the top-half of
a NIC interrupt handler clears the interrupt status flags of adevice, determines how the interrupt
should be handled and defers the corresponding operation (such as processing received packets)
to a later point in time. The Linux kernel provides three mechanisms to defer work:tasklets,
work queuesandtimers.
Tasklets are essentially functions that are called in atomic context within a separate execution
trace. They have higher priority than any other process and should terminate swiftly in order
to avoid high latencies. In contrast, work queues do not havethis constraint because they are

2 Bovet and Cesati [Bovet and Cesati, 2005] give an example which will be paraphrased as follows: Suppose
there are two concurrent code paths (A andB) in a device driver.A has to wait forB. A creates a temporary
semaphoreS, passes its address toB, and waits by callingdown onS. B signals completion withup. A can now
resume execution and delete the temporary semaphore. However, on a multiprocessor system,A andB might call
down andup at the same time, withA deleting the semaphore whileB is still executing theup function.

15

associated with a pseudo process and therefore execute in process context. All operations are
permitted within a work queue function, which makes them less restrictive than tasklets. Work
queue functions are scheduled by a worker thread which is runon each CPU. The next function
on the queue can be only processed once the previous functionhas finished execution. This is
the drawback of work queues: a blocking function stalls the entire queue.
A common use for timers is to terminate a pending operation ifthe device does not respond after
a specified time interval. There are two important constraints on timers. First, the execution
of a timer function might be delayed significantly if the system is under heavy load. Therefore,
timers should not be used for real-time sensitive code. Second, timer functions execute in atomic
context and must not block.

The Memory Model and Memory Management

Compared to user-space applications, the memory model usedby kernel modules is rather com-
plicated and requires careful programming. Device driversprogrammers have to distinguish
between differentmemory zonesandaddress types. In addition, the kernel offers various mem-
ory management functions the programmer can choose from.

Memory Zones and Address Types

The Linux kernel divides memory into three zones:

• DMA-capable memory,

• normal memory and,

• high memory.

The DMA memory zone constitutes of memory that resides within the first 16 MB of main
memory. DMA buffers for devices that support only 24 bit addressing (such as legacy devices
that use the ISA bus or even poorly designed PCI devices) haveto be allocated from this zone.
In most cases, all other memory is allocated from the normal zone [Jonathan Corbet and Kroah-
Hartman, 2005]. DMA-capable memory and normal memory constitute low memorywhere
kernel code and data structures reside. Low memorypagesare always mapped to main memory
and be freely accessed by kernel code (or within a kernel module). In contrast, high memory
addresses are not directly accessible by kernel code and have to mapped explicitly into the
kernel page table. Usually, a device driver has to deal with high memory when transferring data
from user-space into kernel-space. Listing 2.2 illustrates this with a simple example: The read
function of a character device has to fill a buffer provided bythe user-space application with
data; since user-space addresses might refer to high memoryaddresses, a special function has to
be used to make the buffer accessible.

The exact layout of the memory zones is architecture dependent. For example, on 64-bit
x86 systems, there is no distinction between high and low memory. However, a portable de-
vice driver should not make any assumptions on the underlying architecture and always use safe
functions to handle different memory addresses.

16

Listing 2.2: Transferring memory between kernel and user space.

static ssize_t
chrdev_read (struct file *file, char __user * user_buffer, size_t buffer_size

, loff_t* offset)
{

char* device_data; int bytes_read;
/* Read device data ... */

/* ... copy data to user space. */

/* DON’T use memcpy ...*/
/* memcpy(user_buffer, device_data, bytes_read); */

/* ... use copy_to_user */
copy_to_user(user_buffer, device_data, bytes_read);

return byte_xferred;
}

Unlike user-space applications, which only know one type ofmemory address, the kernel dis-
tinguishes between four address types:

• physical addresses,

• bus addresses,

• kernel logical addresses,

• kernel virtual addresses, and

• user-space virtual addresses.

Physical addresses identify locations in main memory and are the result of MMU transla-
tions. Bus addresses are used by devices and in DMA operations. On some architectures, there
is no distinction between bus addresses and physical addresses. However, architectures that are
equipped with I/O memory management units (IOMMU) have a separate address space for de-
vice I/O.
Kernel logical addresses refer to a linear, physically contiguous address space (low memory)
and can be translated into physical addresses by left-shifting PAGE_SHIFT bits. The result of
mapping a page from high memory into kernel space is a kernel virtual address. No assumption
on the layout of kernel virtual address should be made.
Finally, user-space virtual addresses are regular memory addresses used within user-space ap-
plications.

17

Memory Management

Efficient memory management is an important aspect of devicedriver code. Unlike user-space
applications, kernel code does not use the standard C allocators malloc andfree to man-
age memory. Instead, the kernel provides three basic memoryallocator functions:kmalloc,
__get_free_pages andvmalloc.
The most widely used allocator iskmalloc. It can be used to allocate memory from the nor-
mal, DMA or high memory zone. Typical uses forkmalloc are dynamic allocation of data
structures such as ring buffers or DMA buffers. One important difference tomalloc is that the
programmer has to pass one additional argument, an allocation flag, tokmalloc which deter-
mines where memory is allocated from and whether the operation is allowed to block. The most
common used flags are GFP_ATOMIC and GFP_KERNEL which both allocate memory from
the normal zone, but the former flag forbids blocking.
The allocator__get_free_pages is used to allocate larger memory areas, i.e., multiples of
pages (typically 4 KB). There are only a few drivers that makeuse of page allocation. Common
uses are buffer allocation for downloading device firmware or receiving large amounts of data.
Depending on the amount of main memory available,vmalloc can allocate up to a few giga-
bytes of memory. The use ofvmalloc is also rare. For example, virtual device drivers such
as RAM disks make use ofvmalloc. In addition, the kernel also offers optimized allocator
functions for frequent allocation (and deallocation) of small memory regions.

Hardware I/O

Communication with a device is either achieved by performing I/O on registers or by sending
messages to device endpoints. The method of communication determined by the underlying bus.
For example, the PCI bus maps device registers into (main) memory for direct access, while USB
defines a message-oriented communication model with host (the USB controller) and client (the
device).
There are two methods for accessing device registers:port-mappedandmemory-mappedI/O.
Ports are special memory regions that are accessed with dedicated CPU I/O instructions. In
contrast, memory-mapped I/O locations are accessed with the same instructions as all other
memory locations. The difference is important because the CPU and compiler might reorder
memory instructions which may affect the correctness of thedevice I/O code. The solution to
this problems arememory barrierswhich prevent reordering. Port-mapped I/O access does not
come with these problems.
For port-mapped I/O the Linux kernel provides the functions

outb(u8 value, unsigned long port_number);
outw(u16 value, unsigned long port_number);
outl(u32 value, unsigned long port_number);

u8 inb(unsigned long port_number);
u16 inw(unsigned long port_number);
u32 inl(unsigned long port_number);

to read and write values from I/O ports at the specified port addresses. Before access, port ad-
dresses have to be claimed and released with therequest_region andrelease_region
functions, respectively. User-space applications can also gain access to I/O ports via the/dev/ports

18

file node.
I/O to memory-mapped regions is best performed with the following functions

iowrite8(u8 value, void __iomem* addr);
iowrite16(u16 value, void __iomem* addr);
iowrite32(u32 value, void __iomem* addr);

u8 ioread8(void __iomem* addr);
u16 ioread16(void __iomem* addr);
u32 ioread32(void __iomem* addr);

Linux also exports the/dev/iomem file for memory-mapped I/O access within user-space.
There is no uniform interface for message-oriented communication, since the semantics are bus-
dependent. For example, the USB layer supports both, synchronous and asynchronous message
communication. Programmers who are used to programming client/server systems will find
themselves familiar with message-oriented device I/O code. While the details differ, the con-
cepts are essentially the same.

2.5 Further Reading

This chapter only covered the bare basics of Linux device driver programming. More informa-
tion about the programming model can be found in the third edition of “Linux Device Drivers”
book by Corbet, Rubini and Kroah-Hartman[Jonathan Corbet and Kroah-Hartman, 2005]. It is
considered a classic in the kernel community. A hands-on approach to device drivers can be
found in Venkateswaran’s “Essential Linux Device Drivers”which covers a broad range of de-
vice classes with motivating real-world examples [Venkateswaran, 2008]. Cooperstein’s “Writ-
ing Linux Device Drivers” is the most up-to-date book on device drivers and is a helpful yet
incomplete reference [Cooperstein, 2010].
Since the kernel is under active development and driver interfaces are constantly changing and
improving, the most up-to-date information can be found on the web. LWN.net provides weekly
news about selected topics in kernel development [Eklektix, 2010]. The Linux Mailing List
[Spaans, 2010] is the hotspot for most recent discussion andupcoming changes.
Last but not least, the Linux source code can be also a great value of information even though
it might be difficult to know where to look for information. The Linux Cross Referencer (LXR)
makes navigation easier and enables the user to search for identifiers and text segments the Linux
kernel easier [Redpill Linpro AS, 2010].

19

CHAPTER 3
The Device Driver Reliability Problem

According to recent and past investigations on device driver reliability, two main sources of
device driver defects can be identified [Ryzhyk et al., 2009a, Ryzhyk et al., 2009b, Renzelmann
and Swift, 2009, Mérillon et al., 2009, Conway and Edwards, 2004]. On the one hand, there
is lack of formalization of OS and device protocols which determine the correctness of every
device driver. The notion of protocols was already introduced in Chapter 2 and will be refined
in the following sections. On the other hand, current devicedriver programming modelslack
support for important aspects, notably concurrency and hardware I/O.

3.1 Device Protocol Violations

Every device driver is based on a protocol which describes the operations of its device. The
device protocol is typically derived from an informal specification provided by the device man-
ufacturer. Every nontrivial device protocol defines

• an interface,

• a state machine,

• events and

• data structures.

The interface is essentially a feature description of a device and comprises all operations
(or functions) that the device supports. For example, every NIC protocol includes functions for
transmitting and receiving packets.
How the interface functions are invoked is determined by the communication model of the un-
derlying bus. In general, a function is either invoked by performing I/O on device registers or
by sending and receiving messages to specific device endpoints.

21

The state machine captures the internal state of the device (usually only the part which is rele-
vant to the device driver programmer) and possible state transitions. It putsorderingandtiming
constraintson the usage of interface functions and defines data formats for exchange. For ex-
ample, the packet transmission function of a NIC may be only invoked once the transceiver has
been put into the correct state. Usually, devices also generate events that are triggered on various
conditions, for instance, on the completion of an operationor the arrival of new data. The state
machine also specifies when device events are triggered and delivered.
Finally, more sophisticated device protocol also uses data-structures which are shared between
the device and device driver. For example, I/O devices with high throughput rates use data
structures such as ring buffers and queues to manage and process I/O requests. Other device
protocols, such as the USB human interface device class, even require the implementation of
parsers to marshal and unmarshall data.
A key observation is that the same device protocol usually has many instances and can be found
in:

1. the device controller (as part of the firmware or an RTL specification)

2. the corresponding device specification, and

3. device driver code.

The most accurate and complete description of the functional behavior of a device can be
found at the register-transfer level (RTL). Hardware modeling languages like VHDL or Verilog
are used to describe the RTL of a device controller. Althoughthe RTL specification is not im-
portant to the device driver programmer, he or she should have the same understanding of the
underlying device protocol.
In general, the driver programmer obtains the device protocol from the device specification.
Usually, the device specification is created by a technical writer who does not have a complete
understanding of the device but has experience in the field ofengineering and, ideally, writing
talent. In essence, the specification is anabstractionof the RTL written in a natural language
(typically English). Due to the nature of the writing and abstraction process, there are inher-
ent problems withcorrectnessandcompleteness[Ryzhyk et al., 2009a, Ryzhyk et al., 2009b].
Apparently minor mistakes can have large effects and lead tobuggy device driver code. For
example, the specification of Realtek’s RTL8139C network interface controller states that read-
ing the interrupt status register clears all interrupts [Realtek, 2002]. However, this is incorrect
because the status register has to be written instead. Similarly, the revision history of Intel’s
specification of the 8254X gigabit Ethernet chipset shows several additions and corrections to
the original document [Intel, Corp., 2009]. Interestingly, even devices that are developed ac-
cording to standardized interfaces often fail to meet protocol specifications. For example, there
are many controllers that do not exactly adhere to the the standard USB mass storage class spec-
ification. [Axelson, 2010, Dharm, 2010]. In consequence, a complete device driver has to deal
with all these deviations to support a wide range of devices,which adds unnecessary complica-
tions.
The situation is complicated by the fact nowadays, even devices that offer simple functionality,

22

such as mice, have shown a drastic increase in complexity. Power management has become
an increasingly important concern, adding even more complexity to an initially simple device.
With the advent of hotplugging, devices can be plugged and unplugged at any time, requiring
additional synchronization between concurrent device driver activities.
It comes at no surprise that device protocol violations are one of the major sources of device
driver bugs. In a device driver study, Ryzhyk et al. analyzedthe patch history of a selection of
Linux device drivers. They found that device protocol violations account for 38% of all found
defects [Ryzhyk et al., 2009a]. In conclusion, improving the creation process of device specifi-
cations and their protocols is imperative to increase the overall reliability of device drivers.

3.2 Operating System Protocol Violations

An operating system protocol describes how the operations of a device are mapped to the under-
lying driver model. Every device driver has to translate operating system requests into device
specific commands. The underlying OS protocol determines which requests the driver has to
handle and in what order they may appear. In addition, the operating system protocol may also
include generic services that are needed to implement a device driver, for example hardware I/O
or memory management.
The Linux operating system protocol consists of four parts:

1. core services (e.g., hardware I/O, memory management),

2. a collection of driver subsystems (e.g., networking, USB) that export interfaces,

3. their corresponding data-structures (for example, socket buffers or I/O request queues),
and

4. constraints on each interface, service and data-structure.

Data-structures, interfaces and services are implementedas C functions that can be invoked
within the kernel environment on behalf of the device driver. Since the C programming language
does not supportdesign by contract, constraints that go beyond simple type checks have to be
described informally. As is the case with informal device protocols, there are inherent problems
with correctness and completeness.
In their device driver study, Ryzhyk et al. have shown that OSprotocol violations constitute
20% of all found device driver defects [Ryzhyk et al., 2009a]. They found that the most frequent
faults are incorrect use of OS data structures, passing incorrect arguments to OS services and in-
correct configuration of driver subsystems. Apart from the inherent complexity of multithreaded
driver subsystems and their programming, Ryzhyk et al. find that the reason is that communica-
tion between the OS and drivers is poorly defined. Indeed, obtaining accurate information about
the driver API interfaces can be difficult.
The Linux kernel comprises a huge collection of subsystems and API functions that require a lot
of documentation effort which is not always properly undertaken. In fact, the main problem with
the kernel documentation is that it is highly fragmented, incomplete and inconsistent. In 2007,

23

the Linux Foundation awarded Landley with a fellowship to improve the Linux documentation
[Landley, 2008]. Landley realized that although there is a huge amount of available documen-
tation, it is poorly structured and organized. He found thatthe main problem is that there is
no complete, comprehensive and up-to-date documentation that can be obtained from a single
location. In fact, pieces of partially redundant documentation are scattered over many different
locations, and can be found in the

• kernel-source tree,

• linux-kernel mailing list (archives),

• Linux Weekly News page (lwn.net)

• Ottawa Linux Symposium proceedings, and in

• books and numerous other online resources.

One of the most apparent places to start looking for up-to-date documentation is the kernel
source tree. However, even the kernel-source tree does not organize the contained documenta-
tion very well and contains three complementary sources of documentation: the Documentation
directory, kerneldoc entries found in kernel source files and numerous help entries of the kernel
configuration toolkconfig. Due to bad organization, neither of them prove to be a good source
to get started. For example, the documentation directory contains an overwhelming number of
poorly indexed plain-text files on a wide range of topics. Thetop-level directory is completely
incoherent, containing text files about using spinlocks, the Amiga Zorro Bus, memory barri-
ers, and so on. More specific topics are categorized and refined by subfolders. Some of these
subfolders contain a central index file, others not. It is easy to get lost in the Documentation
directory.
The most up-to-date information can be found in the linux-kernel mailing list. However, Land-
ley notes: ’These days, most kernel developers consider it impossible for anyone to read all
messages on linux-kernel, certainly not on a regular basis’. Indeed, the linux-kernel mailing
list archive shows that over 157,000 messages were posted in2009 [Spaans, 2010]. Although
the well-known Linux Weekly News (LWN) page provides informative articles on important
discussions in the kernel community, only a small fraction of all information is being covered.
Attempts to provide weekly, in-depth overviews of important discussions have eventually failed
[Landley, 2008].
The proceedings of the Ottawa Linux Symposium provide interesting insight into latest kernel
research and the inner workings of various kernel subsystems, but the aspiring device driver
programmer (or kernel hacker) has to know which topics to look for.
The arguably best source to get basic information about device driver programming and the in-
volved protocols, is by reading one of the few available textbooks. However, many of them
are already outdated and do not cover all important details of the driver API. For example, the
definitive guide to device driver development ’Linux DeviceDrivers’ by Corbet, Rubini and
Kroah-Hartman [Jonathan Corbet and Kroah-Hartman, 2005] provides useful information on
Linux driver programming but it is outdated and incomplete.While many sections of the driver

24

API are covered, many important subsystems are left uncovered.
Because kernel development moves at a very fast pace, any kind of documentation, be it books
or easily updatable online resources, will inevitable faceproblems with incompleteness and ac-
tuality. While this can be considered a problem for any actively developed open source API, the
Linux driver subsystems haven undergone many fundamental changes. Many of these changes
affect the majority of the device driver code base.For example, the USB subsystem has been
reworkedthreetimes to yield higher performance, requiring changes to allaffected drivers. Ac-
cording to key developer Kroah-Hartman, there will be no stable API for device drivers. He
argues that a stable API would make it impossible to improve kernel interfaces, and hence, also
device drivers1. In conclusion, this makes the documentation task even morechallenging.

3.3 Programming Model Weaknesses

Chapter 2 provided a short overview of the Linux device driver programming model and granted
an impression of the involved complexity. In essence, tool and language support for device
drivers is limited, while the requirements on driver programmers are high. The current driver
programming model lacks support for two key aspects that arepart of every device driver: con-
currency and hardware I/O. In addition, there is no support for the separation of device and OS
protocol management code which leads to readability and maintainability problems.

Concurrency and Synchronization Faults

Concurrency faults are very common in device driver code dueto the complicated multi-threaded
execution model of the kernel. Typically, a device driver comprises a series of entry points
which are invoked simultaneously. Nowadays, almost all modern busses support hotplugging.
This means that devices can be removedat any time, requiring additional synchronization and
coordination effort between parallel driver activities. This makes device driver code very hard to
read and comprehend. Another factor that leads to complications is that driver functions execute
in different execution contexts.
Ryzhyk et al. conducted a detailed defect analysis based on thirteen hand selected drivers for
the USB, Firewire and PCI busses [Ryzhyk et al., 2009a]. Ryzhyk et al. found that concurrency
bugs account for 19% of all device drivers faults. Table 3.1 shows detailed results of their study.

As shown in Table 3.1, deadlocks comprise a significant fraction of concurrency faults. The
cause for most deadlocks is surprisingly simple: “calling ablocking function in an atomic con-
text”. There are a number of possible explanations for this.On the one hand, inexperienced
programmers might not be always aware whether a function exhibits blocking behavior or if
it is safe to call a blocking function. On the other hand code refactorings, changing either the
behavior of a driver API function or the execution context ofa function in the driver itself, might
cause this kind of bug. Padieoleau et al. present a case studyon this bug, in which a parameter
(an allocator flag) was added to the USB messaging functionusb_submit_urb [Padioleau
et al., 2006]. The correct choice of the parameter was dependent on the surrounding execution

1Kroah-Hartman’s statement can be found in the documentation folder of the kernel tree. Interested readers
might take a look at the filestable_api_nonsense.txt

25

Table 3.1: Types of concurrency faults in device drivers (adopted from [Ryzhyk et al., 2009a]).

Type of faults Occurrences
Race or deadlock in configuration functions 29
Race or deadlock in hot-unplug handler 26
Calling a blocking function in an atomic context 21
Race or deadlock in the data path 7
Race or deadlock in power management functions5
Using uninitialized synchronisation primitive 2
Imbalanced locks 2
Calling an OS service without an appropriate lock1

context, and many wrong adoptions were made, leading to deadlocks. Interestingly, in some
cases, programmers passed the wrong flag, even if the contextshould have been immediately
obvious. Since the C programming model does not distinguishbetween different execution con-
texts, the compiler cannot prevent such faults, even thoughthey are trivial to detect, as this thesis
will show.
Implementation of synchronization strategies is yet another challenge device driver program-
mers have to face. One aspect that is particularly difficult to implement is correct locking. In
general, the correctness of a locking scheme depends on the identification of all critical sections,
the placement of locks, and the order in which they are taken.In Linux device driver program-
ming, correct locking also depends on the choice of lock types. Even with the correct placement
of locks, a deadlock can occur when selecting the wrong lock type. When choosing a suitable
lock type, three basic rules have to be followed:

1. Never call a blocking function in atomic or interrupt context.

2. Never call a blocking function while holding a spinlock.

3. Whenever a spinlock is used within an interrupt handler, interrupts have to be disabled
when taking the spinlock outside of the handler.

The first rule implies that semaphores cannot be used in interrupt handlers or in atomic con-
text, since the lock acquisition function might block. In such cases, spinlocks have to be used
instead. In particular, this means that if a shared resourceis accessed within process context and
interrupt or atomic context, then a spinlock has to be used inprocess context as well. Although
sleeping is permitted in process context, doing so while holding a spinlockmaylead to a dead-
lock. This might not be always immediately obvious, since code refactorings or a deep function
call hierarchies might hide spinlocks. The last rule is subtle and deserves further explanation.
When using spinlocks, there are some rather subtle problemsthat may occur in combination
with interrupts. Listing 3.1 shows a common code pattern in device drivers that uses spin-
locks to protect shared data. In the sample code, there are two entry points: the interrupt
handlerirq_handler and read which accepts read requests from user-space processes.
Both entry points perform operations on the shared resourcedevice_datawhich is protected

26

from concurrent access with the spinlocklock. The locking code in theread function

Listing 3.1: Spinlocks and interrupts.

spinlock_t lock;

static irqreturn_t irq_handler(...)
{

spin_lock(&lock);

/* Manipulate device/driver data */
some_operation(device_data);

spin_unlock(&lock);

return IRQ_HANDLED;
}

static ssize_t read (...)
{

spin_lock_irqsave(&lock, irq_flags);

/* Manipulate device/driver data */
another_operation(device_data);

spin_unlock_irqrestore(&lock, irq_flags);
}

is of particular importance in this example. The function calls spin_lock_irqsave and
spin_unlock_irqrestore to acquire and release the spinlock, respectively. While the
lock is taken, interrupts on the local CPU are disabled. Thiscrucial detail ensures correctness of
the locking scheme. If theread function used the same locking code as the interrupt handler,
leaving interrupts enabled, then there is the possibility of a deadlock. If the interrupt occurs
while the lock is taken in theread function, then the CPU will spin forever in the interrupt
handler because no other activity can occur at that time. On an SMP architecture, the situation is
even worse, because the code will work if the interrupt is handled on a different CPU but cause
a deadlock otherwise.
Another problem that occurs in concurrent device driver code is stack ripping, a term coined
by Adya et al. [Adya et al., 2002]. Stack ripping is common in (traditional) event-driven pro-
gramming models in which computations are divided into several event handlers. For example,
an asynchronous I/O operation is typically split into a function which issues the request and
immediately resumes execution, and a completion handler. In this scheme, the programmer has
to write glue code to establish a link between the function and its completion handler. If the I/O
request operates on data of the function stack, then the contents of the stack have to be restored
in the completion handler as well. The resulting code is veryhard to read and maintain.
Listing 3.2 shows an excerpt from the low-performance mass storage driver/drivers/block/ub.c,
which illustrates this problem. The purpose of the code is to(depending on the type of the

27

Listing 3.2: Stack ripping in the ub.c driver

1 static void ub_data_start(struct ub_dev* sc, struct ub_scsi_cmd* cmd)
2 {
3 /* ... */
4

5 usb_fill_bulk_urb(&sc->work_urb, sc->dev, pipe, sg_virt(sg),
6 sg->length, ub_urb_complete, sc);
7

8 if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
9 /*... */

10 return;
11 }
12

13 if (cmd->timeo)
14 sc->work_timer.expires = jiffies + cmd->timeo;
15 else
16 sc->work_timer.expires = jiffies + UB_DATA_TIMEOUT;
17

18 add_timer(&sc->work_timer);
19

20 cmd->state = UB_CMDST_DATA;
21

22 }
23

24 static void ub_urb_complete(struct urb *urb)
25 {
26 struct ub_dev *sc = urb->context;
27

28 ub_complete(&sc->work_done);
29 tasklet_schedule(&sc->tasklet); /* Finish request, code not shown here */
30 }
31

32 static void ub_urb_timeout(unsigned long arg)
33 {
34 struct ub_dev *sc = (struct ub_dev *) arg;
35 unsigned long flags;
36

37 spin_lock_irqsave(sc->lock, flags);
38 if (!ub_is_completed(&sc->work_done))
39 usb_unlink_urb(&sc->work_urb);
40 spin_unlock_irqrestore(sc->lock, flags);
41 }

request) transmit data to or receive data from an USB mass storage device. The data transaction
phase is initiated in the functionub_data_start. Line 8 callsusb_submit_urb which
issues an asynchronous USB request to the device endpoint. The corresponding completion
handlerub_urb_complete is registered at lines 5-6. While the message is being sent tothe
device, execution in the function resumes. In lines 13-18, the function creates a dynamic timer to

28

handle the event of a data transmission timeout. Upon completion of the USB request, execution
continues inub_urb_complete or in ub_urb_timeout in the case of a timeout.
The important thing to note here is that the data transfer logic is scattered over three functions
(to be precise, even four, if we count the invocation of the tasklet at line 29). Note that the
variable “sc” which holds information about the command andalso contains a reference to the
timeout handler, has to be taken from the stack and manually extracted in the timeout function
and the completion handler. The resulting code suffers fromreadability problems due to implicit
control-flow and data dependencies between different functions. The same problem also occurs
in interrupt handlers which are divided into bottom and top halves.

No Separation of Concerns

The implemention of a device driver can be divided into two aspects. The first aspect implements
the device protocol and communicates with the device, whilethe second aspect interacts with
the operating system according to the rules defined in the OS protocol. While the two aspects
are disjoint2, Linux device drivers typically mix them. This has negativeimpact onreusability,
readability, maintainabilityandportability.
A past study on Linux device driver code has shown that over 20percent of Linux device driver
code originates from copy&paste operations [Li et al., 2004]. According to the study, device
drivers contain about 500,000 of copy&pasted code accounting for 12% of the Linux kernel
2.6.6 source code. Considering the rapid growth of the Linuxkernel, it can be expected that the
proportion of copy&paste code also increased significantly.
Because the programming model does not support the reuse of OS-specific code, the only op-
tions are to rewrite a device driver from scratch or to adopt,i.e., copy&paste, existing driver code.
In both cases, the resulting device driver code contains a significant fraction of OS-dependent
code that has to be maintained seperately along with all other device drivers. Thus, the resulting
device driver code is more difficult to read. But there is another, more severe problem: if the OS
protocol changes, then all affected drivers have to be (manually) modified. In 2006, Padiolaeau
et al. observed that the number of referenced driver libraryfunctions per device driver of the
Linux kernel version 2.6.13 has doubled since version 2.4 [Padioleau et al., 2006]. This means
that device drivers contain more and more OS-specific code and are more likely to be affected
by (partial) OS protocol changes. Thus, even minor changes to driver interfaces are likely to
affect a large number of drivers. Padiolaeau et al. call thiseffectcollateral evolution[Padioleau
et al., 2006].
Until recently, either scripts that search for code patterns (based on regular expressions) or man-
ual code editing techniques were used to make necessary modifications to the driver code base.
However, with conventionally employed scripting techniques, some interface changes cannot
be easily automated and require (manual) data and control-flow analysis. Also, collateral evo-
lutions usually also introduce new bugs and slow down driverdevelopment [Padioleau et al.,
2006]. It has to be mentioned however, that the recently developed semantic patcherCoccinelle
(see Chapter 6, “Related Work”) already shows promise to solve this problem. Coccinelle has
been successfully used to create a variety of kernel patchesthat deal with complex changes.

2Ryzhyk et al. demonstrated this with their device driver generator Termite [Ryzhyk et al., 2009b].

29

While the negative impact on maintainability can be mitigated with advanced tools like Coc-
cinelle, there is a another problem concerning collaboration. In essence, the programming model
does not supportdivision of knowledge and labor. Currently, device driver programmers are
required to have in-depth knowledge of deviceand OS protocols. Since the OS protocol is
changing very frequently, device driver programmers have to follow discussions in the Linux
community regularly. If there was a clean separation between OS and device protocols, then de-
vice experts could focus and specialize on implementing device protocols, while kernel experts
could focus on implementing OS protocols. A cleaner separation of concerns has the poten-
tial to reduce costs and save time for hardware manufacturers and increase the readability and
maintainability of device driver code. Also, the portability of device driver code can be vastly
improved since the same device specification can be used for different operating system archi-
tectures. The usefulness of this approach has been demonstrated by Ryzhyk et al., who realize
that separation of concerns is key for improvements in the device driver development process
[Ryzhyk et al., 2009b]. With their prototyped device drivergenerator, they have shown that
OS protocol implementations for Linux and FreeBSD can be interchanged without affecting the
device protocol implementation.

No Support for Hardware I/O

According to Mérillon et al., code that communicates with hardware is known to be particularly
error-prone. On the one hand, this is due to the addressed problems with device protocols (see
Section 3.1), on the other hand this is because of the low-level nature of hardware I/O code.
Hardware designers usually encode different information into a single register to efficiently use
space and reduce the amount of I/O operations. Thus, individual values have to be extracted
with (error-prone) bit operations such as bitmasking or shifts. Another problem is the possibility
of race conditions memory-mapped I/O operations due to instruction reordering by the com-
piler or the CPU. Mérillon et al. found that bit operations can represent up to 30% of device
driver code [Mérillon et al., 2009]. They do not, however, provide statistics on the error-rate in
bit operations. Experienced device driver programmers probably write more robust I/O code.
Nonetheless, what Mérillon et al. do show is that high-levellanguage support can help the
compiler to perform more accurate type checks [Mérillon et al., 2009].

Poor Support for Debugging and Testing

Debugging device drivers can be a very difficult issue. Whilea buggy user-space applications
can be restarted after a crash, device driver bugs often result in kernel crashes. As a result,
the computer (or virtual machine) has to be restarted, whichcan be very tedious and frustrat-
ing. Kernel debuggers such as kdb can help detecting the cause of the bug, and in many cases,
the kernel prints out useful information when it encountersan error condition. However, once
the system is in an illegal state, there is no way around a restart: errors like memory corrup-
tion easily affect logically unrelated subsystems or code parts. This is an inherent limitation of
kernel-space drivers. Therefore, it is wise to program defensively and carefully. However, the
brittle kernel environment makes experimentation with unfamiliar subsystems very difficult and
in particular newcomers will have frustrating experienceseventually. A successful technique for

30

locating bugs is code-halving which involves removing and reinserting parts of the driver code
until the bug has been found. The drawback of this method is obviously the time that has to be
spent to find the bug.
Testing of device driver code is also a difficult issue because of the multithreaded programming
model and the fragile kernel environment. In any moderatelycomplex device driver, there are
many interleaving code paths that might lead to race conditions and which have to be covered.
Most importantly, to the best of the author’s knowledge, there are no official tools and method-
ologies for testing Linux device driver code.

No Tolerance for Hardware Failures

In a recent study, Kadav et al. found that many drivers do not validate device data and as a result
might crash if the device does not operate correctly [Kadav et al., 2009]. For example, they
found that the following code fragment of the 3c59x.c NIC driver will be stuck in an infinite
loop, if the device malfunctions:

while (ioread16(ioaddr + Wn7_MasterStatus)) & 0x8000) ;

At the time of writing, almost one-and-a-half years have passed and the most recent kernel
version (2.6.37) still contains this line of code. Kadav et al. also discovered that drivers use
unchecked device data as indices for static and dynamic arrays. Also, while some device drivers
do validate the state of a device, they halt the kernel prematurely on failure instead of performing
device recovery. For example, there are three cases in the RTL 8139C+ driver where the kernel
is halted if a data-structure is in an unexpected state or an illegal request is passed to the driver.
Semantic patches are a possible solution to this problem. Incontrast, in microkernel architec-
tures, device drivers can be simply restarted, thus, no codeaccomodations are necessary [Herder
et al., 2009].

3.4 Towards Solving the Reliability Problem

In summary, three main causes for the device driver reliability problem can be identified:

• increasing OS and device protocol complexity,

• no formalization of OS and device protocols, and,

• high complexity of the underlying programming model.

Due to the increasing complexity of OS and device protocols,formalization has become a
requirement to effectively prevent protocol violations. The lack of formal methods is a problem
which affects the reliability of device drivers belonging to any operating system. With respect
to Linux, it has been demonstrated that the programming model is very complex and does not
provide support for crucial aspects of device driver programming. The absent support for syn-
chronization adds additional complications to the controland dataflow in device driver code. An
equally important problem is that there is no separation between device protocol and OS proto-
col implementation. Therefore, device driver progammers have to knowledgeable in the area of

31

kernel development and have to be familiar with the internals of devices as well. Considering
the rapid pace at which kernel development moves, keeping up-to date with the latest changes is
not as easy as it sounds.
Solving the reliability problem is a complex issue. In essence, the way device drivers are written
has to be completey changed. First and foremost, it is evident that there is need for a formal
basis for device and OS protocols. Also, the implementationprocess has to be simplified, since
the current programming model puts too much of a burden on driver programmers. What makes
the problem particularly complex is the fast rate at which devices with new features are put onto
the market, requiring increasingly complex drivers. However, even without new devices, fitting
or recreating existing drivers according to a new paradigm is yet another difficult challenge.
The situation is not hopeless, however. There are already a number of promising technologies
which are discussed in detail in Chapter 6. However, insteadof creating a new paradigm for
device drivers, the next chapters will show how the current programming model can be made
more robust and which improvements can be expected for future device drivers.

32

CHAPTER 4
The CiD Programming Language

This chapter introduces CiD (C for Drivers), an extended subset of the C programming language
which reflects the device driver programming model of the Linux kernel. CiD provides built-in
support for three major device driver code aspects: concurrency, synchronization and hardware
I/O. In addition, there is support for reusing code patternsin device driver code. A simple tem-
plate language is used to capture these patterns.
The CiD compiler is programmed with a set of rules that define legal operations in concurrent
device driver code. Because syntactical enhancements allow the compiler to derive more accu-
rate information about the concurrent control flow of a device driver, the compiler can effectively
apply kernel-specific concurrency rules to perform more rigid consistency checks. As a result,
the compiler is capable of detecting race conditions and operations that lead to deadlocks.
Support for synchronization is twofold. CiD offers a Java like synchronized construct that
can be used by the programmer to mark critical sections in device driver code in order to protect
access to shared resources. The code generator infers the correct locking primitive for each of
the critical sections, which reduces the potential of deadlocks. Since locking can be an expen-
sive operation, CiD also supports the generation of lock-free atomic operations. The compiler
translates arithmetic and bitwise operations on atomic variables into atomic operations.
Also, CiD supports the programmer in generating device I/O code by providing means to de-
scribe and manipulate low-level data layouts such as message descriptors and device registers.
Additional consistency checks assist the programmer in writing more robust low-level code.

4.1 Basic Language Design

The design of CiD is motivated by the question how programmers can be assisted by a compiler
in creating more reliable device driver code. Unlike other (promising) research approaches,
CiD builds on the traditional Linux driver programming model instead of changing it. Since
all kernel developers are intimately familiar with the C programming language, CiD is based
on a C99 subset with extensions that provide demonstrable, practical support for (Linux) device
driver programming. Thus, programmers that are familiar with C should find themselves also

33

familiar with CiD. In order to avoid unnecessary complications, an informal description of the
language will be provided. The basic subset which CiD buildson includes:

• Arithmetic, logical, relational and bitwise expressions,

• Control flow statements,

• Functions,

• User-defined types, i.e.,structs andtypedefs

• Unparameterized preprocessor macros

CiD features all arithmetic, logical, relational and bitwise expressions except shorthand op-
erators. Operator precedence follows the definition found in the C standard. Control flow state-
ments are limited toif-else andwhile statements. There is also support forgotos which
are used throughout in the kernel in conjunction with error-handling.
The type system has been adapted to the needs of device driverprogramming. As part of the
adaption process, some types have been entirely removed. Since floating point arithmetic is for-
bidden in kernel space, there is no support for the classicalfloat anddouble types.
The handling of integer types has been simplified and made more flexible. The C99 standard
defines a rather confusing set of integer types with their actual sizes varying from platform to
platform. Because this makes portability of data layouts cumbersome, the Linux kernel provides
its own set of integer types which are architecture-dependent typedefs that follow a clear and
consistent naming convention. While the CiD compiler uses the Linux types to generate code,
they were not explicitly integrated into the language. Instead, CiD offers arbitrary sized integers
that are translated into their closest-fitting native types. This feature is useful when describing
low-level data layouts and allows the compiler to perform additional consistency checks (see
section 3.3).
Unlike C, CiD does not support arithmetic on pointer types toprevent potential memory access
faults. Instead, pointers have been replaced with C++ like references to enable the programmer
to define aliases and call-by-reference semantics for function parameters. Cases where pointer
arithmetic can be useful (such as manipulating device memory) are dealt with the hardware I/O
features CiD provides.
CiD offers five new user-defined types:descriptors, register files, flags, templatesandperdevice
contexts. The types will be introduced in the following sections. In addition, there are new func-
tion modifiers that denote execution context and driver entry points (see section 3.3).
The initial design of CiD also employed automatic memory management with a scope-based
memory model to deal with memory leaks. This model allowed the compiler to allocate and
cleanup a resource based on the life-time of the surroundingscope. While this approach seemed
reasonable at first glance, the main problem is that programmer-defined error-handling for failed
allocations was not supported. However, CiD offers a compromise and provides the C++ in-
spirednew anddelete operators for which the compiler infers suitable memory allocators.

34

4.2 Support for Code Reuse

Device drivers that handle the same device class share common code patterns which are also
known as “boilerplate” code. Boilerplate code typically comprises allocation and initialization
of device-class-specific data structures and resources, registration with the corresponding device
class subsystem and cleanup code. However, boilerplate code may be also more complex and
include device-class specific logic, such as ring buffer management for a NIC driver. It is com-
mon practice to use existing device driver code as referenceand to copy, paste and adopt similar
code sections. The drawback of this approach is that changesin the original code have to be
propagated to all copy and pasted drivers. In contrast, CiD provides a cleaner way to reuse code
with templates. Every CiD device driver includes a templatewhich contains skeleton code for a
specific device class.
Listing 4.1 shows a fragment of the CiD template declarationfor a PCI-based NIC driver. Ev-
ery template definition consists of a list of attributes, overridable functions (indicated by the
request-modifier) and external functions defined in the Linux kernel. A template may also
include type definitions as shown in the first line by the opaque typesk_buff_t, a handle to
a socket buffer. Opaque types are similar to C typedefs, but they do not inherit operators from
their base types, except assignment, equality and inequality operators.
Listing 4.2 shows an excerpt from the template definition, containing part of the boilerplate code.
Every template is divided into sections, containing nativeC code mixed with template expres-
sions. For every overridable entry point, there must be an equally named section. A template
must also include aninclude and aheader section (lines 1-12 and lines 14-22) which con-
stitute of #include directives and function declarations,respectively. This makes it easier for the
compiler to merge different template files together. Theprobe section (lines 24-52) contains
boilerplate code to preinitialize the device.
Preinitialization consists of multiple steps which are thesame for every NIC driver, for instance,
allocating a custom data container for each device instance(we call that a perdevice context),
allocating and registering a handle to the network layer, setting DMA attributes, and so on. Tem-
plate code is parametrized with template expression which are delimited with matching pairs of
$-tokens. During translation, the template compiler replaces applied template variables (expres-
sions) with their bound values. Template variables can be either defined as attributes or function
parameters. The template language comes with a set of predefined variables. These include
code insertion variables and constants like the name of the device driver. Internally, the com-
piler divides the code of every overridden function into entry point $:entry$, the “actual”
code$:code$, and cleanup code$:exit$. This division is necessary, because unlike the
C89 standard, CiD allows variable declarations mixed with statements. Thus, the$:entry$
variable contains declarations, while the remaining code resides in$:code$. Initialization and
cleanup of embedded perdevice data structures such as tasklets (see section 4.3) resides in the
variable$:perdevice_init$ and$:perdevice_cleanup$ (not shown in the exam-
ple), respectively.
Listing 4.3 shows how the template can be used in a CiD driver.Upon inclusion of the file
pcinet.cid, the compiler looks for the corresponding template definition in the inclusion path
(in this casepcinet.tl), and invokes the template compiler to translate the template file. The

35

compiler ensures that every entry point is overridden and issues an error message otherwise.
As shown in the example, it is also possible to directly “include” C code. C code sections are
delimited with pairs of the ’@’-token.
One interesting feature is that compiler-defined functionscan be invoked within templates.
These functions can then access the AST of the program, whichcan be very useful. For ex-
ample, the functionallocator_flag determines the current execution context and infers a
suitable allocator, i.e.,GFP_KERNEL orGFP_ATOMIC. This is useful for various functions that
need to allocate memory, as shown for thedma_alloc_coherent section (line 55).

Listing 4.1: PCI NIC template declaration

opaque "struct sk_buff*" sk_buff_t; /* Socket buffer handle */

template PCINET {
/* Template attributes */

int product_id;
int vendor_id;
int tx_timeout;
unsigned int num_registers;

/* Overridable entry points */

/* PCI hotplugging events */
request int probe(perdevice& dev, net_dev_t net_dev, readonly pci_dev_t

pdev);
request void disconnect(perdevice& dev);

/* NIC entry points */
request interrupt int irq(perdevice& dev);

/* External functions */
byte[] dma_alloc_coherent(readonly pci_dev_t pdev, int size, dma_addr_t&

dma_addr);
}

4.3 Support for Concurrency and Synchronization

Execution Contexts

Every device driver function is associated with an execution context which determines the types
of operations that are permitted within the function. Because execution contexts are fundamental
to the concurrency model, CiD provides two function modifiers that define the context of a
function.

atomic void f() { /* ... */ }
interrupt irqreturn_t ISR() { /* ... */ }

36

Listing 4.2: Generic initialization code for PCI-based NICdrivers

1 include /@
2

3 #include <linux/pci.h>
4 #include <linux/pci_regs.h>
5

6 /* Supported PCI device */
7 struct pci_device_id _pcinet_id_table[] = {
8 {PCI_DEVICE($vendor_id$, $product_id$)},
9 {0},

10 };
11

12 @/
13

14 header /@
15 struct pci_driver _pcinet_pci_driver = {
16 .name = "$:device_name$",
17 .id_table = _pcinet_id_table,
18

19 .probe = _pcinet_probe,
20 /* ... */
21 };
22 @/
23

24 probe(netdev, pdev) /@
25 $:entry$ /* Variable declarations are expanded here */
26

27 /* Allocate perdevice context */
28 if (($netdev$ = alloc_etherdev(sizeof(_pcinet_priv))) == NULL) {
29 printk("$:device_name$: Allocation of netdev failed\n");
30 goto alloc_ether_dev_failed;
31 }
32

33 $netdev$->netdev_ops=&rtl_ops;
34

35 $netdev$->watchdog_timeo = $tx_timeout$;
36

37 $:perdevice_init$
38

39 if (register_netdev($netdev$))
40 {
41 printk("$:device_name$: Registration of network device failed!\n");
42 goto netdev_failed;
43 }
44

45 /* User defined code goes here ... */
46 $:code$
47

48 if ((rc=pci_enable_device($pdev$))) {
49 printk("$:device_name$: pci_enable_device failed\n");
50 goto pci_enable_failed;
51 }
52 @/
53

54 dma_alloc_coherent(pdev, size, dma_addr) /@
55 dma_alloc_coherent(&$pdev$->dev, $size$, dma_addr, $allocator_flag()$)
56 @/

37

Listing 4.3: Excerpt from the 8139C+ NIC driver, showing howto use templates

1 #include "pcinet.cid" /* Include our PCI-based NIC template declaration */
2

3 PCINET.vendor_id = 0x10EC; /* Realtek */
4 PCINET.product_id = 0x8139; /* 8139C+ */
5 PCINET.num_registers = 0x100;
6 PCINET.tx_timeout = 6000;
7

8 /* Data per device, automatically instantiated in the template */
9 perdevice {

10 bool vlan_enabled;
11 }
12

13 request int PCINET.probe(perdevice& dev, net_dev_t net_dev, pci_dev_t pdev)
14 {
15 dev.vlan_enabled = 0;
16 @printk("rtl: device attached.\n");@
17 return 0;
18 }

Functions that are not declared with a context modifier execute in process context. The
compiler ensures that there are no calls to blocking functions in an atomic function since this
may lead to a deadlock. The algorithm is trivial as it only needs to walk through the call graph
and check if there is a function that violates the atomicity property. The same rule applies to
interrupt handlers. An additional rule ensures that interrupt functions are not called by any other
function.

Deferred Work

Deferring computations to a later point in time is a common idiom in Linux device drivers.
The kernel provides three mechanisms that realize deferredwork: dynamic timers, tasklets, and
workqueues.
CiD unifies these concepts with simple-to-usedeferred blocks. Listing 4.4 shows a fragment
of CiD code that handles an interrupt. The example shows a typical pattern in device driver
code. The top half of the interrupt handling routine determines what caused the interrupt, ac-
knowledges the interrupt and defers processing to a later point in time. When translating the
code into native Linux kernel code, the CiD compiler performs three steps. Listing 4.5 serves as
illustration and shows the converted device driver code.
In the first step, the compiler chooses a suitable mechanism for each deferred block. In the ex-
ample, the choice depends on the execution context of the function process. If process is
defined as an atomic function, then the deferred block will bereplaced with a tasklet. If, on the
other hand,process may block then a workqueue will be chosen instead. If the execution of
the deferred block has to be delayed by some amount of time, the block can be extended with a
time parameter, e.g.,defer 100ms { ...}. Depending on the operations inside the block,

38

Listing 4.4: Deferring work in an interrupt handler in CiD

perdevice {
int pending_tx;
queue_t request_queue; /* queue_t defined elsewhere */

}

interrupt ISR(int irq, perdevice& dev) {
/* Top half */

// Read interrupt status register
// Acknowledge interrupt

/* Bottom half */
defer /* 100 ms */ {

while (dev.pending_tx > 0)
{

process(dev.request_queue); /* process defined elsewhere */
dev.pending_tx = dev.pending_tx - 1;

}
}

return IRQ_HANDLED;
}

the compiler either chooses a dynamic timer or a delayed workqueue to replace the block. In
the following, we assume that that no timing parameter is present andprocess is an atomic
function, and therefore, the bottom half will be executed ina tasklet.
In the second step, the compiler generates the functiondeferred_ISR_instance (lines
23-33) which contains the execution code for the tasklet, i.e., the bottom-half of the interrupt
handler (lines 28-31). The original deferred block is replaced with a call to the driver library that
instructs the kernel to schedule a tasklet (line 18).
In the third step, the compiler creates data-structures (containers) that hold variables that were
part of the original function stack and have to be moved into awider scope (so that the tasklet
function can access them). Lines 1-4 define the containerISR_container which stores the
reference to the perdevice instance and also holds the tasklet instance. The container is embed-
ded into the perdevice structures as defined in lines 6-9. Thecontainer and the reference to the
device context is extracted from the parameter of the tasklet functiondeferred_ISR_instance
(lines 24-26). Finally, the tasklet is initialized, i.e. associated with its function and container,
during device initialization (line 39). Currently, deferred blocks may only access perdevice
contexts; access to the variables on the enclosing functionstack is not possible (with the excep-
tion of the perdevice& parameter).
In some cases, it is necessary to cancel or wait for the (pending) execution of a deferred com-
putation. CiD offers thepath type which represents instances of deferred computation. Vari-
ables of typepath can be assigned to deferred blocks. Listing 4.6 demonstrates how this can
be put into use. In the example, the driver sends an asynchronous USB control request
to the device. In the meanwhile, the driver waits for the operation to be finished by calling

39

Listing 4.5: Translated driver code

1 typedef struct {
2 perdevice* dev;
3 struct tasklet_struct tasklet_instance;
4 } ISR_container;
5

6 typedef struct {
7 int pending_tx;
8 ISR_container container;
9 } perdevice;

10

11 irqreturn_t ISR(int irq, void* data) {
12 perdevice* dev = (perdevice*) data;
13

14 /* Read interrupt status register */
15

16 /* Acknowledge interrupt */
17

18 tasklet_schedule(&dev->tasklet_instance);
19

20 return IRQ_HANDLED;
21 }
22

23 void deferred_ISR_instance(unsigned long data) {
24 perdevice* dev;
25 ISR_container* container = (ISR_container*)data;
26 dev = container->dev;
27

28 while (dev->pending_tx > 0)
29 {
30 process(dev->request_queue);
31 dev->pending_tx = dev->pending_tx - 1;
32 }
33 }
34

35 /* Device initialization */
36 int __devinit init() {
37 perdevice* dev;
38 /* ... */
39 tasklet_init(&dev->container, deferred_ISR_instance, (unsigned long)

dev->container->tasklet_instance)
40 }

40

Listing 4.6: Named deferred computations in use

perdevice {
completion_t compl;

}

void func(perdevice& dev) {
// Send USB control request
usb_fill_control_urb(..., ub_urb_complete, &compl);

path timeout;

timeout = defer 500ms {
complete(&dev.compl);

}

wait_for_completion(&dev.compl); // Wait for the USB transfer to finish
cid.cancel_sync(timeout); // Shutdown timeout handler

}

wait_for_completion on the coordination structurecompl. Upon completion of the re-
quest, the functionub_urb_completewill be called, indicating completion of the operation
by manipulatingcompl. If, however, the request does not finish within 500 milliseconds, the
request will be terminated prematurely withcomplete(&dev.compl). After completion,
the driver terminates the pending timeout operationtimeout.
In general, named deferred blocks should be only used when absolutely necessary. Note that the
CiD compiler takes care of generating shutdown code for pending deferred computations when
the driver or its device is removed.

Concurrency Protocols

A device driver contains multiple entry points which are invoked concurrently. By default, the
CiD compiler assumes that all entry points can be invoked simultaneously at any time. While
this assumption guarantees that every unsynchronized access will be detected, it also leads to
a high number of false reports. Depending on thestateof the device driver, some entry points
might be deactivated, while others are active. For example,when a network interface driver
receives a power-management suspend request, the packet request handling entry points will be
deactivated and only activated after a resume request.
To make the detection of race conditions more accurate, CiD featuresconcurrency protocols
which allow the programmer to specify the active entry points in each state. As already men-
tioned, the specification of such a protocol is optional and for each device driver, there may be
only one protocol. Listing 4.7 shows an excerpt of the concurrency protocol of a NIC driver.
Every protocol is divided into two parts. The first part contains a programmer-defined list of
device (driver) states and their active entry points. For example, in the stateDRIVER_INSERT,
the only active entry point isModule.init. The second part captures state transitions which

41

Listing 4.7: Excerpt of the concurrency protocol from the NIC driver 8139cp.cid

protocol {
/* Device driver states and active entry points */
DRIVER_INSERT : Module.init;

PCI_PROBE :
global : || PCINET.probe, || PCINET.disconnect;
perdevice : PCINET.probe;

NIC_RUNNING :
global : || PCINET.probe, || PCINET.disconnect, PCINET.irq, /* ...

*/ ;
perdevice : PCINET.disconnect, PCINET.irq, /* ... */ ;

/* ... */

/* State transitions triggered by function calls */
PCINET.init -> PCI_PROBE ;
PCINET.netif_start_queue -> NIC_RUNNING ;

}

are triggered by function calls or invocation of driver entry points.
According to the protocol, after calling the function PCINET.init (which registers with the PCI
subsystem), the driver switches to the PCI probing statePCI_PROBE. Since the driver supports
multiple devices, the probe and disconnect functions (PCINET.probeandPCINET.suspend,
respectively), can be invoked simultaneously. They can be also invoked in parallel to themselves
which is indicated by the ’||’ prefix. Therefore, access to global device driver data has to be
synchronized. The situation is different for perdevice-data, however. Since a disconnect request
is always associated with a previous probe request, access to perdevice-data is implicitly seri-
alized. Therefore, the protocol allows to differentiate between between global and per-device
scope.
If there is a deferred code block in the control path of an entry point, then the compiler extends
the protocol with an additional entry point as the deferred block. Whenever the corresponding
entry point is active, then all of its associated deferred computations are active as well.

Synchronization

Locking is an essential aspect of multithreaded programming and often difficult to implement
correctly. As we have seen in chapter 2, the programming model for device drivers is particularly
complex because of different lock types and execution contexts.
CiD offers some relief to the programmer and provides thesynchronized keyword to mark
critical sections in device driver code. The compiler associates each synchronization block with
the correct lock instance and lock type. This reduces the potential for creating deadlocks due
to incorrect lock types or imbalanced locks. The compiler ensures that blocking operations are
not called in synchronized blocks that are replaced with spinlocks. If a synchronization block

42

Listing 4.8: Comparison between traditional locking code and CiD locking code.

spinlock_t lock;

/* Device interrupt */
irqreturn_t irq_handler(...)
{

spin_lock(&lock);

/* Manipulate device/driver
data */

some_operation(device_data)
;

spin_unlock(&lock);

return IRQ_HANDLED;
}

/* Read request - Executes in
process context*/

ssize_t read (...)
{

spin_lock_irqsave(&lock,
irq_flags);

/* Manipulate device/driver
data */

another_operation(
device_data);

spin_unlock_irqrestore(&lock,
irq_flags);

}

/* Device interrupt */
request interrupt irq_handler(...)
{

synchronized {
/* Manipulate device/driver data */
some_operation(device_data);

}

return IRQ_HANDLED;
}

/* Read request - Executes in process
context*/

request ssize_t read (...)
{

synchronized {
/* Manipulate device/driver data */
another_operation(device_data);

}
}

contains areturn or goto statement, then the compiler releases the lock, if necessary.
Listing 5.2 revisits the spinlock example from chapter 3 anddemonstrates how it can be solved
with synchronization blocks in CiD. When inferring the correct lock type, the compiler only
distinguishes between spinlocks and mutexes even though the kernel offers specialized variants
of spinlocks and semaphores which are optimized for multiple readers. Theoretically, when
determining the correct lock type, factors such as read to write ratio and contention have to be
considered as well. However, the CiD compiler does not try toestimate those factors. This is
because a simple analysis of the device driver tree has shownthat in over 10,000 device driver
files, about 94% of all lock instances are made up by only two types: spinlocks and mutexes.
Figure 4.1 shows the distribution of lock instances of all types in the driver tree. Also, when
instantiating a lock, two scopes have to be distinguished: global scope and perdevice scope. If

43

Figure 4.1: Kernel locking primitives and their uses in device drivers. Spinlocks and mutexes
are the most commonly used lock types.

the protected resource is part of a device instance, then itscorresponding lock is declared in
the scope of the device. Although instantiating a lock in global scope is always correct, this
distinction is crucial for performance.
Synchronization blocks can be also placed around function calls to protect the resources along
the callgraph hierarchy, thus the following lines are perfectly legal in CiD:

byte shared[512];

request void read(...) { /* Read is reentrant */
synchronized {

f();
}

}
void f() { /* Operate on ’shared’ */ }

Atomic Expressions

Atomic expressions provide an efficient way to safely operate on shared variables. Typical
uses of atomic variables and expressions include keeping track of device status or counting the
number of pending I/O operations. The CiD compiler is able totransform such expressions into
atomic operations. The algorithm walks through all expressions in a CiD program and tries to
match the corresponding operator trees with atomic operations. Table 4.1 shows all code (and
operator tree) patterns the algorithm recognizes and the resulting transformations. There is one

44

additional safety rule: there must be only a single occurrence of an atomic variable in an atomic
expression.

4.4 Support for Hardware I/O

Hardware communication is an integral part of device drivers which usually involves writing
(error-prone) low-level which consists of a series of bit-operations. CiD supports the program-
mer in writing device I/O code by providing bitflags, descriptorsandregister filesthat can be
used to describe low-level data structures and to communicate with devices.

Descriptors

Descriptors enable the programmer to define and operate on low-level data layouts such as DMA
descriptors or commands for message-oriented devices. To illustrate the use of descriptors,
table 4.2 shows the data layout of the SCSIWrite(12) command which can be used to write
data to various kinds of SCSI-based storage devices. The actual meaning of the fields is not
important, focus will be put onto the memory layout.

When translating a memory layout into C data-structure, three important details have to be
considered:packing, byte alignmentandbyte order. Listing 4.9 shows how theWrite(12)
command might be defined in C (with Linux kernel types) and in CiD .

Although the CiD code is much more verbose, there are severalbenefits over the C code.
Unlike ordinary Cstructs, descriptors carry more information about the actual data layout
and thus, enable the compiler to perform consistency checksand to generate low-level bit code
for accessing individual fields.
Every descriptor field declaration is defined in the context of a range expression which denotes
the byte region (or byte position) in which the corresponding declarations reside. This allows the
programmer to specify constraints on packing and byte-order. For example, the second byte of
the Write(12) descriptor is occupied by the writemode flags and the LUN (logical unit number)
of a device. The programmer can access both fields separately. In contrast, in the original C code,
both fields have to be expressed with the same field declaration. Theoretically, the programmer
could use bit fields to split the declaration, but the C standard does not define the ordering of
bit fields. Thus, portable device drivers never use bit fieldsfor hardware I/O transactions. In
C code, when writing the variablelun to the LUN field, the following operations have to be
performed:

SCSI_Write12 w12;
lun = (lun << 5) | w12.LUN_mode;
w12.LUN_mode = lun;

In CiD , the compiler is capable of generating the above bit operations, and, so the programmer
can simply write:

w12.LUN = lun;

The optional bit range specifiers (at the end of a declaration) tell the compiler about the exact bit
positions of packed fields.

45

Table 4.1: Atomic code patterns the CiD compiler recognizes, and their transformations.

CiD Code Transformation
Read-and-write Operations

int A<atomic>;
int num;
A = num;
num = A;

atomic_t A;
int num;
atomic_set(num, &A);
num = atomic_read(&A);

Arithmetic

A = A + 1;
A = A - 1;
num = A + 1;
num = A - 1;
A = A + num;
A = A - num;
num = A + num;
num = A - num;

atomic_inc(&A);
atomic_dec(&A);
num = atomic_inc_return(&A);
num = atomic_dec_return(&A);
atomic_add(num, &A);
atomic_sub(num, &A);
num = atomic_add_return(num, &A);
num = atomic_sub_return(num, &A);

Test-and-set operations

if (A=A-1, A == 0) then
...

end if
if (A=A+1, A == 0) then

...
end if

if (atomic_dec_and_test(&A))then
...

end if
if (atomic_inc_and_test(&A))then

...
end if

Bit operations

flags(3)status_t {B1, B2, B3};
status_t status<atomic>;
status.B1 = 1;
status.B2 = 0;
status.B3 =∼status.B3;

u8 status;

set_bit(0, &status);
clear_bit(1, &status);
toggle_bit(2, &status);

46

Table 4.2: Data-layout of the SCSI_WRITE12 command

↓ byte / bit→ 7 6 5 4 3 2 1 0
0 Opcode = 0x2A
1 LUN DPO FUA EBP Reserved RelAdr
2-5 LBA
6 Reserved
7-8 Transfer length
9 Control

Listing 4.9: Comparison between C structs and CiD descriptors

#define RelAdr (1 << 4)
#define EBP (1 << 3)
#define FUA (1 << 2)
#define DPO 1

typedef struct {
u8 op_code;
u8 LUN_mode;
__le32 LBA;
u32 reserved;
__le16 TransferLength;
u8 Control;

} __attribute__((packed))
SCSI_Write12;

flags(5) w12_flags {
RelAdr,
_, /* Reserved */
EBP,
FUA,
DPO

}
descriptor SCSI_Write12 {

0: int(8) op_code;
1: w12_flags mode: 0..4;

int(3) LUN: 5..7;
2..5: int(32) LBA;
6: _; /* Reserved */
7..8: int(16) TransferLength;
9: int(8) Control;

}

An important detail to consider when operating on low-leveldata-layouts data is byte-order.
Bus protocols and device controllers do not necessarily agree with the byte order of the local
CPU. Thus, byte order conversions have to be computed when communicating with a device.
Programmers have to worry about byte-order only once, when defining the layout. Whenever
a descriptor field is read from or written to, the compiler converts the field or the new value
into the correct byte order. The compiler simply uses the Linux supplied conversion functions.
The compiler uses a simple rule for determining the byte order: if the byte interval of a field
declaration is ascending, its byte order is little-endian,otherwise big-endian. For example, the
byte interval2..5 of theLUN field denotes litte-endian byte order. The interval5..2, on the
other hand, would denote big-endian byte order.
Finally, the compiler performs a set of consistency checks on every descriptor definition which
ensure that

1. there are no overlapping byte and bit intervals,

47

2. there are no gaps between byte and bit intervals,

3. all fields exactly fit into their respective byte intervals,

4. the sizes of all bit intervals coincide with the bit sizes of their corresponding field data
types.

These assertions ensure that every bit and byte in an descriptor is accounted for and check
whether a descriptor definition is complete. If there are unused bytes or bits an descriptor, then
the programmer has to use “don’t care” fields (_) to explicitly fill up unneeded space.
There is one important restriction when defining descriptors: Descriptor fields must be either
scalar types or byte arrays. In particular, this means that nesting of descriptors is forbidden and
there must not be reference fields.

Register files

Register files enable the programmer to define device register layouts and to communicate with
devices that expose their registers to a bus. Listing 4.10 shows a CiD fragment of the register
definition for the RTL8139 network interface controller. Every register is declared in the con-

Listing 4.10: CiD Register file definition for the RTL8139C NIC

typedef unsigned int(1) bit;

regfile RTL {
/* Chip command register */
0x37:
_: 7..5; /* Reserved */
bit CMD_RST : 4; /* Reset */
bit CMD_RE : 3; /* Receiver enable */
bit CMD_TE : 2; /* Transmitter enable */
_: 1;
bit CMD_BUFE: 0; /* Receive buffer empty? */

/* Transmit status descriptor */
0x10..0x13, ..., 0x1c..0x1f:
bit CRS: 31; /* Carrier sense lost */
/* ... */
bit OWN: 13; /* Own bit, 0 starts transmission */
unsigned int(13) TX_SIZE: 12..0; /* Packet size */

}

text of a byte region which refers to the base address of the device. For example, the command
register is mapped at offset 0x37. There is also the possibility to define register groups, which
is demonstrated by the transmit status descriptor (TSD) definition. The RTL controller defines 4
identical, 4 byte status descriptors, which are mapped intoa contiguous area in the register file
(from 0x10 to 0x1f). Instead of defining the same set or registers all over again, programmers

48

can use the shorthand notation0x10..0x13, ..., 0x1c...0x1f to define the layout
only once. The compiler performs the same consistency checks as it does on descriptors, i.e., it
ensures that the register file definition is complete.
Listing 4.11 shows how the register file definition can be usedto communicate with the con-
troller. As the example shows, I/O is performed by accessingfields of the RTL namespace.

Listing 4.11: I/O interaction with the RTL controller

/* Initialize the NIC */
request int PCINET.start_nic(perdevice& dev, net_dev_t netdev)
{

RTL.CMD_RST = 1; /* Reset device */
/* ... */
RTL.CMD_TE = 1; /* Enable transmitter */
/* ... */
RTL.CMD_RE = 1; /* Enable receiver */

}

/* Packet transmission request */
request int PCINET.start_xmit(perdevice& dev, sk_buff_t skbuff)
{

/* dev.cur_tx - index to current transmitter status register */

RTL.TX_SIZE[dev.cur_tx] = PCINET.skb_data_len(skbuff);
RTL.OWN[dev.cur_tx] = 0;

}

Register groups are accessed with the array index operator[]. The actual I/O address of the de-
vice is hidden as a field in the perdevice context, which the code generator uses as an argument
to theiowrite/ioread functions (see chapter 2). Therefore, the register file namespaces
may be only accessed within perdevice context.
How the memory address (the pointer) to the device register file is obtained depends on the bus
and is realized in the corresponding code template. For example, the template for PCI NICs uses
thepci_iomap function to create a pointer to the device registers. In order to ensure correct-
ness of I/O code, there are three rules to which the compiler adheres. The first rule states that the
size of the byte interval determines the width of the read or write access. For example, the chip
command register (at offset 0x37) is accessed with theio{write|read}8 functions, while
the transmit status registers are accessed with theio{write|read}32 functions.
The second rule states that consecutive write operations tothe same register group (offset) are
combined into a single write operation. In the example, the transmit functionPCINET.start-
_xmit relies on this rule because the RTL specification states thattheOWN bit andTX_SIZE
have to be written at the same time.
The third rule ensures that unmodified register bits are preserved if the programmer writes only
to a portion of a register group. The compiler issues a read-modify-write operation in this case.
One crucial detail the programmer currently has to pay attention to is the possibility of reordered
device register memory accesses. This is a problem unique tomemory mapped I/O, and the only

49

way to compensate is with memory barriers. Currently, memory barriers have to be placed by
the programmer manually. Also, the programmer has to be aware of device-specific side-effects
when reading or writing to registers.

4.5 Implementation

This section gives a short overview of the compiler implementation. Focus will be put onto the
concurrency analysis, since it is the most elaborate and interesting part of the compiler. The
other analyses are straightforward and can be browsed in thecompiler source files.

Compiler Infrastructure

The architecture of the compiler is very simple and follows the classical division into front- and
backend.
The frontend uses PLY [Beazley, 2010], a python port of the well-known lex and yacc tools, to
scan and parse input files. The parser generates an object-oriented abstract syntax tree (AST)
which is processed by analysis and transformation rules viathe visitor pattern [Gamma et al.,
1995].
The backend consists of the code generator and the template compiler. The code generator tra-
verses the (transformed) AST and directly generates C statements and uses the template compiler
to generate code from templates. The compiler relies on the Ccompiler to perform low-level op-
timizations such as constant folding, or common-subexpression elimination. Table 4.3 presents
an overview of the most important source files of the compiler.

50

Table 4.3: Overview of the most important compiler source files.

Package Module / File Description
Core components

cid

cid.py “Executable”; wires all analysis files together
lexer.py Lexer
parser.py Grammar definition

cid.syntree nodes.py AST node classes
cid.analysis name_analysis.py Name analysis
cid.analysis operator_usage_analysis Type analysis on operators and functions

Concurrency
cid.analysis function_analysis.py Calculation of root sets

cid.analysis.concurrency

atomic_expression_analysis.pyTransformation of atomic expressions
deferredwork_analysis.py Replace defer blocks with tasklets, workqueues or timers
protocol_analysis.py Preprocess programmer-supplied protocol information
sblock_inheritance_analysis.pyInheritance of synchronization blocks
concurrency_analysis.py Detection of race conditions and lock inference. Also, check for

blocking calls in atomic context, or while holding spinlocks.
Hardware I/O

cid.analysis.hwio
layout_analysis.py Consistency checks for memory layouts, i.e., descriptors and reg-

ister files
descriptor_analysis.py Generate bit manipulation code for field access, generate byte-

order conversions
register_file_analysis.py Replace register file accesses with I/O code; coalesce consecutive

write operations
Templates and Codegenerator

cid.codgen
codegen.py Code generator: emits C code from AST nodes
template_compiler.py Template compiler: parses template files, transforms template ex-

pressions, emits C code
template_functions.py List of compiler functions that can be invoked from templatecode51

Listing 4.12: CiD example of concurrent reads and writes.

int a;
perdevice { int z; }

protocol {
INIT: || e1, e2, e3;
NOT_E1: e2, e3;

stop_e1 -> NOT_E1;
}

interrupt request void e1()
{
synchronized {

write_a();
}

}

request void e2(perdevice& dev)
{

stop_e1();
read_a();

synchronized {
read_z();

}
}

request void e3(perdevice& dev)
{

synchronized {
read_a();
write_z();

}
}

Concurrency Analysis

The concurrency analysis has two goals: to detect and reportany race conditions and to infer
the correct lock instance and type for every synchronization block. Listing 4.12 shows a simple
example of concurrent CiD code that will be used to explain the analysis.

The analysis comprises the following tasks:

1. Compute the set of concurrent variable accesses.

2. Based on this set, determine the set of conflicting accesses.

3. Compute which synchronization blocks belong together, and determine the correct lock
type.

Instead of showing the native Python implementation of the individual steps, a more abstract
language is chosen to explain the ideas behind the algorithms to avoid going into unnecessary
details1.
The first step is depicted by Algorithm 1. When the algorithm terminates, every variable is asso-
ciated with a table,concurrent_accesses, which keeps track of read and write operations
(RWAccesses) with respect to the current entry pointep and all active entry points. The set of
active entry points is defined by the supplied concurrency protocol (or the default protocol with

1 In contrast to the specified algorithms, the implementationis far more complex: On the one hand, the imple-
mentation combines all three steps into one single pass. On the other hand, the AST has to be interpreted, protocol
information has to be inspected, active entry points are calculated and so on. Nonetheless, the algorithms convey the
basic idea and serve as an aid to understand the reasons behind the implementation.

52

all entry points enabled at any time). The functionActiveEntryPoints computes the entry
points for any given source location in the program. Table 4.4 shows the results of the algorithm
for the running example. Note that sincee2 disables entry pointe1, there are no concurrent
accesses from entry pointe1 as indicated by the empty list.

Algorithm 1 Computing concurrent accesses in CiD code

for all ep ∈ EntryPoints(Program)do
for all rw ∈ RWAccesses(ep) do

for all a ∈ ActiveEntryPoints(rw) do
rw.variable.concurrent_accesses[ep][a] += [rw]

end for
end for

end for

Table 4.4: Results of the concurrency analysis for the program in Listing 4.12

a e1 e2 e3
e1 [write_a] [write_a] [write_a]
e2 [] [read_a] [read_a]
e3 [read_a] [read_a] [read_a]

z e1 e2 e3
e1 [] [] []
e2 [] [read_z] [read_z]
e3 [write_z] [write_z] [write_z]

Algorithm 2 performs the second step and reports any race conditions. For every variable
access, the algorithm checks if there is a conflict, i.e., at least one write operation happening at
the same time. In this case, the access has to be synchronized. As shown in the algorithm, there
are two cases of synchronization, either via a surrounding or inherited synchronization block, or
if the variable is declared as atomic. Whether the atomic expression can be converted into na-
tive code is determined by the atomic expression evaluator.Note that parallel read accesses are
not regarded as conflicting accesses. For example, functione2 can safely read froma without
synchronization.
After all synchronized accesses have been determined, the last step of the algorithm can be per-
formed (see Algorithm 3). The basic idea of the algorithm is very simple: If the concurrent
variablesx andy are protected with an enclosing synchronization blockS1, then they are re-
lated. This relation is transitive: Ifz happens to be synchronized inS2 along withy, thenx is
also related toy, i.e.,S1 andS2 have to be replaced with the same lock instance. To keep things
simple, we assume that this relation has already been computed, and the functionSyncSet
simply yields all synchronization blocks for a given variable and the current entry point infor-
mation. The choice for the correct lock type is trivial. If atleast one variable in the transitive
closure is shared within interrupt or atomic context, a spinlock has to be used. Otherwise it is
safe to use a mutex. Computing the correct scope is analogous, whereas global scope is favored
over per-device scope. In the example, all synchronizationblocks are replaced with a single
global spinlock instance. Note that even thoughe2 deactivates entry pointe1 before reading
from z, the same lock has to be used, becausee3 synchronizesa along withz.

53

Algorithm 2 Detecting race conditions in CiD code.

for all ep ∈ EntryPoints(Program)do
for all rw ∈ RWAccesses(ep) do

for all a ∈ ActiveEntryPoints(rw) do
acc_list← rw.variable.concurrent_accesses[a][ep]

if (rw = WriteAccess∧ |acc_list| > 0) ∨ WriteAccess∈ acc_list ∨ IsReentrant(a,
ScopeOf(rw)) then

{Conflicting access detected. Check for explicit synchronization.}
synchronized← EnclosingSyncBlock(rw) 6= NULL
synchronized← synchronized ∨ rw.variable.type = Atomic
synchronized ← synchronized ∨ | f .inherited_sblocks| >= f .invocations∧
f .invocations > 0

if ¬ synchronized then
Report race condition forrw

end if

rw.variable.synchronized =synchronized
end if

end for
end for

end for

Algorithm 3 Compute lock instances and lock types.

for all ep ∈ EntryPoints(Program)do
for all rw ∈ RWAccesses(ep) do

{Compute initial lock}
if Modifier(ep) = InterruptModifier∨ Modifier(ep) = AtomicModifier then
lock← Spinlock(shared_with_irq=(Modifier(ep) = InterruptModifier))

else
lock← Mutex()

end if
scope← ScopeOf(rw.variable)
{Propagate locks}
for all a ∈ ActiveEntryPoints(rw) do

for all sblock ∈ SyncSet(rw.variable,ep, a) do
sblock.lock← ChooseLock(sblock, lock)
sblock.lock.scope← ChooseScope(sblock, scope)

end for
end for

end for
end for

54

CHAPTER 5
Experimental Evaluation

This chapter presents an experimental analysis of CiD’s language extensions. In order to demon-
strate the practical usefulness of the newly added languageconcepts, two Linux drivers have
been converted: the network driver for the 8139C+ chipset [Realtek, 2002]8139cp and the
low-performance USB mass storage driverub. The two drivers have been selected because
they operate on two different communication models: the NICdriver is register-oriented, while
the USB mass storage driver is messaged based. The drivers serve as reference to analyse the
proposed concurrency, hardware I/O and template features.

5.1 Methodology

In the course of this thesis, a broad spectrum of device drivers have been studied, ranging from
simple input drivers to more complex network and block device drivers. Among these, two
moderately complex drivers have been selected and converted into CiD to assess the proposed
language extensions and to test the compiler implementation.
The first driver controls Realtek’s 8139C+ fast-ethernet NIC chipset [Realtek, 2002] which is
used in cost-effective, low-end network devices. The driver has been chosen because, unlike
more complex drivers such as the widely used E1000 driver, ithas a manageable code size (i.e.,
2000 lines of code compared to over 10,000 lines of code) and includes all important aspects of
a NIC driver. The 8139C+ driver serves as assessment for CiD’s hardware I/O, concurrency and
code reuse features.
The second driver that has been converted is theub driver (/drivers/block/ub.c), a low-performance
driver for USB mass storage devices. While this driver is simpler than the standard high-
performance driverusb_storage, its complicated control-flow serves as a good test for CiD’s
concurrency and synchronisation features and their implementation.
The NIC driver has been tested with an emulated RTL8139C+ controller. For this purpose, the
machine emulator QEMU (version 0.12.5) [Bellard, 2011], running the Linux kernel version
2.6.35 was used. The USB mass storage driver was tested with the 2.6.35 kernel running on a
ThinkPad T60 and various USB thumb drives as test devices.

55

5.2 Concurrency and Synchronization

Table 5.1 shows various statistics on the converted driverswhich were obtained with the CiD
compiler. The remainder of this section will give a detailedanalysis on the data.

Table 5.1: Statistics on concurrency and synchronization obtained with the CiD compiler

USB Mass Storage Driver 8139C+ NIC Driver
Concurrency data
Number of entry points 13 27
Reported race conditions (without protocol) 889 600
Reported race conditions (with protocol) 512 367
Falsely reported race conditions 110 40
Inferred deferred work instances 11 0
Synchronization data
Number of critical sections 14 18
Inferred lock instances 3 1
Inferred atomic operations 8 0
Inferred allocator flags 13 5

Detected Race Conditions

The NIC and the mass storage driver have many interleaving code paths which is clearly indi-
cated by the high number of concurrent accesses (i.e., race conditions without protocol informa-
tion and synchronization blocks removed) to shared variables inferred by the CiD compiler (see
Table 5.1).
Table 5.1 shows that concurrency protocols significantly improve the compiler’s ability to cor-
rectly identify race conditions. With protocols, reductions of 38 to 42 % are achieved, yielding
to a false positive rate of 6% to 21% for the fully synchronized driver. In the NIC driver, with all
synchronization blocks in place, the compiler reports 40 false race conditions. On the one hand,
these are due to 28 concurrent accesses to the netdevice handle which holds device statistics. In
the current implementation, the individual statistics fields of the handle are indirectly accessed
with helper functions, e.g.,PCINET.rx_ok(dev.netdev). Thus, the compiler does not
recognize that actually separate fields are safely accessed. On the other hand, the 12 remain-
ing race condition reports are due to corner-cases in which either race conditions do not affect
correctness of the driver or are avoided by lock-free synchronization. Figure 5.1 illustrates the
12 cases with a compiler-generated data-flow callgraph. Listing 5.2 shows an example of the
driver’s polling routine and interrupt handler which concurrently access the status registerISR
in a safe manner.
Accurate detection of race conditions in the mass storage driver is very difficult. This is because
the driver makes heavy use of deferred work, asynchronous functions and uses implicit synchro-
nization patterns which are hard to detect with the current implementation. Listing 5.1 shows a
simple case of implicit synchronization. The compiler reports that there is a conflict for the vari-

56

io location: (80/0x50,80/0x50)(2 confl icts)

io location: (224/0xe0,225/0xe1)(1 confl ict)

rx_frags(3 conflicts)

vlgrp(2 conflicts)

io location: (62/0x3e,63/0x3f)(4 confl icts)

mdio_wri te

cp_init_hw

read_eeprom

cp_start_nic

open_nic

resume
eeprom_cmd

eeprom_extend_cmd

eeprom_cmd_star t

eeprom_cmd_end

wr i te_eeprom
ethtool_set_eeprom

ethtool_get_eeprom

ethtool_get_eeprom_len

ethtool_set_wol

ethtool_get_rx_csum

tx_t imeout_handler

cp_stop_nic

vlan_rx_register

ethtool_set_rx_csum

rx_poll

cp_rx_skb

ethtool_get_stats

irq

Figure 5.1: Compiler-generated conflict graph of the 8139C+driver. Blue boxes represent driver
entry points, red edges denote unsynchronized data paths.

abledev.comp, between the deferred computation and the waiting statement. However, the
value is intended to be changed concurrently. Also, what theexample does not show is that there
are numerous other instances in which this pattern occurs, and, thus the number of race reports
easily adds up. Theoretically, protocols could be used to express safety, but unfortunately, there
is currently no way to address named deferred computations.Even if this was possible, the re-

57

sulting protocol would get even more convoluted than it already is (with 16 state transitions and
5 states). However, the results could improve with languagesupport for coordination patterns.
Nonetheless, the mass storage driver represents a rather extreme case. For register-based drivers
with a moderately complex control flow, the concurrency analysis results can be expected to
match with the converted 8139cp driver.

Listing 5.1: A case of implicit synchronization in the mass storage driver

request int USB.probe(perdevice& dev, ...)
{

/* ... */
ub_sync_getmaxlun(dev, ...);

}

int ub_sync_getmaxlun(perdevice& dev)
{

timeout = defer 500 ms {
@complete@(&dev.comp);

}

cid.wait_for_completion(&dev.comp);
cid.cancel_sync(timeout);

}

Locking

Both, the NIC and the mass storage driver, use locks as the most frequent type of synchronisa-
tion. Locking in the NIC driver is straightforward. There are 18 critical sections and all of them
are protected with a single per-device spinlock. The CiD compiler infers almost all NIC driver
locks correctly, with the exception of one critical section. This is due to a limitation in the ex-
pressiveness of register files, as Listing 5.3 shows. This problem can be worked around with by
inducing a redundant data-flow dependency between related critical sections, i.e., reading from
a shared variable or register location.
Locking in the USB mass storage driver is more complicated. Block device drivers usually use a
spinlock to interact with the I/O queue and to protect critical sections. This cannot be expressed
with synchronization blocks, since the programmer cannot gain access to lock instances and, for
example, pass a dedicated queue lock to the blocklayer. Instead, in the converted driver code,
the template takes care of instantiation of the queue lock, while the compiler infers separate lock
instances for the critical sections. The compiler infers one additional lock for the per-device
counteropenc which keeps track of the number of processes which have opened the device.
In the original driver, this counter is protected by the shared queue lock, but since there is not
data-flow dependency to other shared variables, the CiD compiler infers a separate lock. This
seems to be correct, however, in case of doubt, applying the data-flow dependency trick will
work.

58

Listing 5.2: Implicit synchronization in the RTL8139C+ driver

request atomic int PCINET.rx_poll(...)
{

int rx;

rx_status_loop:
rx = 0;
RTL.ISR = cp_rx_intr_mask;

while (1) { /* Receive packets */
if (status & DescOwn) {

break;
}
...
if (rx >= budget) { // Are we done

with all packets?
break;

}
}

if (rx < budget) {
/* Implicit synchronization: process

remaining packets if we received
packets in the meanwhile */

if (RTL.ISR & cp_rx_intr_mask) {
goto rx_status_loop;

}
}
...

}

/* Device interrupt */
request interrupt PCINET.irq

(...)
{

intr_t status;

status = RTL.ISR;

/* Clear all interrupts */
RTL.ISR = status & ~

cp_rx_intr_mask;

...

return 0;
}

Listing 5.3: Establishing data-flow dependencies to correct locking code.

/*
Read the contents of all registers, copy to user-space.
Currently not supported by CiD, so we have to use a workaround.

*/
request void PCINET.ethtool_get_regs(perdevice& dev, ..., void& p)
{

synchronized {
@memcpy_fromio(p, _perdev_instance_->__iomem__, 0x100);@ /* Can’t do that

in CiD */
cid.nop(dev.tx_head); // Establish data-flow dependency (will not

generate code)
}

}

59

Atomic Operations

The mass storage driver uses the per-device atomic variablepoison to keep track of the con-
nection status of the device. The operations on the variableare very simple and constitute of read
and set operations. In total, all 8 atomic operations have been correctly inferred by the compiler.

Deferred Work

Among the two drivers, only the mass storage driver uses deferred work. Although the NIC
driver comprises an interrupt handler, it uses the NAPI (newnetwork API) to bounce off CPU-
intensive computations. The CiD distribution comes with anold-style network driver (rtl.cid)
which demonstrates what a traditional interrupt handler looks like. Contemporary drivers, how-
ever, use the NAPI as it provides important features such as software implemented interrupt
mitigation.
The mass storage driver uses two kinds of deferred work: dynamic timers and a single workqueue.
Dynamic timers are used to cancel delayed, asynchronous USBtransactions, while the workqueue
implements the state machine for the driver and processes I/O commands. The workqueue and
the dynamic timers have been successfully replaced with deferred blocks and correctly inferred
by the compiler.
One problem with the current implementation is that every deferred computation is associated
with a separate handle. This leads to a considerable increase in binary size as Table 5.2 shows.
Future versions could easily overcome this problem by allowing the programmer to specify an
identifier for each deferred block to share handles.

Deadlock Prevention

In Linux device driver code, there are numerous ways to create deadlocks. In the converted
drivers, the compiler ensures that following properties hold:

• There are no blocking function calls while holding a spinlock

• There are no blocking function calls in atomic context

• Locks are always balanced

The first two properties have been verified by placing blocking calls in atomic functions
and synchronization blocks that are replaced with spinlocks. Special attention has to be paid to
functions whose blocking behavior is determined by an allocator flag. This is important because
choosing the wrong allocator flag may lead to a deadlock. In the CiD drivers, these flags are
automatically inferred by the compiler, thus preventing the chance for deadlocks. This means
that the functions are now context insensitive and unaffected by future code refactorings. In
the mass storage driver and the NIC driver, 13 and 5 flags, respectively, have been inferred by
the compiler. Finally, in the generated code, all locks are balanced which is a seemingly trivial
consequence that comes with the use of synchronization blocks. However, care has to be taken
when returning from a function while holding a lock, which might not be always immediately

60

apparent. In the mass storage driver, there are two such cases which are handled correctly by the
compiler.

Table 5.2: Code statistics of the converted and original drivers. The NIC driver code size could
be reduced by 14%. In contrast, the mass storage driver showsan increase in code size because
CiD does not provide all concise syntax features of C, yet. Increases in binary size are due to
redundant HW I/O operations and wastefully instantiated deferred work.

Drivers
8139C+ - C / CiD USB Mass Storage - C / CiD

Physical SLOC 1607 / 1377 1584 / 1701
Binary Size 31,549 / 34,233 33,960 / 26,960

1

5.3 Hardware I/O

The hardware I/O features have been used in both, the NIC driver and the USB mass storage
driver. However, since the mass storage drive is message-oriented, it only serves as a test for
descriptors. The NIC driver, on the other hand, uses descriptors and register files. The main
criteria of evaluation was the number of redundant operations generated by the compiler, and, of
course, correctness.

Descriptors

The NIC driver uses descriptors to operate on DMA ring buffers for sending and receiving
packets. In the USB mass storage driver, descriptors are used to encode data-transfer commands.
When reading or writing descriptor fields, there is a penaltysince the compiler inserts conversion
functions. This is no issue for the network driver, but in themass storage driver, there are 3
instances in which no such conversion is necessary. There are two causes for this. First, when
comparing descriptor fields, no byte order conversions are necessary. This was not considered
during implementation, but the compiler could be updated with a simple optimization rule to
handle this case. Second, the command descriptor of the massstorage protocol contains a tag
field that identifies the current transaction for which its byte order does not matter. This cannot
be expressed with the current syntax, but descriptor field declarations could be extended with a
don’t-care modifier for byte-order.
However, there are other accommodations which have to be done. One feature that would be
helpful is inheritance of data-layouts. For example, the packet transmission descriptor of the
8139C+ chipset changes part of its layout (the first 32 bits) depending on its state. Currently, this
cannot be expressed with descriptors. Therefore, two separate and almost identical descriptor
layouts have been definied. Future versions should considerinheritance to avoid unnecessary
typing.

61

Register Files

In the original 8139C+ driver, there are 78 I/O operations. The CiD compiler generates 120
I/O operations which is a factor of 1.5 increase compared to the original code. The result was
expected to be much lower because the original I/O interaction code is very simple, thus not
requiring any special considerations. There are two explanations.
First, the compiler always generates read-modify-write operations from writes to individual reg-
isters of a register group, regardless of the inter-procedural data-flow. For example, during
initialization phase, the transmitter and receiver of the NIC are enabled by changing the corre-
sponding bits in the Command register. Because all other bits in the Command register are left
untouched, the compiler issues a read-modify-write operation to protect their values. However,
during initialization, no other execution trace touches the register, which is unknown to the com-
piler.
Second, the expressiveness of register files is rather limited, and not all access patterns can be
easily expressed with CiD’s register files. Once a register group has been divided into individual
registers, it is not possible to access the entire group. However, as the 8139cp driver shows,
this is necessary in some instances. The original driver uses a per-device copy of the Command
registercmd to keep track of important changes such as enabled/disabledchecksum offloading.
In the converted driver, the changed bits have to be written back individually, thus increasing the
number of I/O operations.
A quick performance test withnetperf revealed no significant performance impacts. This
might be a bit surprising, but this was expected since the redundant I/O operations are scattered
evenly over the source code, and thus, different functionalities. However, more detailed testing
might reveal performance penalities, but this was not the focus of this thesis (and the compiler
implementation).
In order to eliminate redundant read-modify write operations, two steps have to be taken. First,
the hardware I/O analysis has to be made aware of the results of the concurrency analysis to de-
termine possible conflicts. Second, the register file specification has to offer some way to specify
whether it is safe to concurrently access individual bits ofa register. This should be considered
for future versions.
Whether the resulting I/O code shows an increase in readability is debatable. The main reason
is that the 8139 chipset does not define a very complicated register layout, and therefore, I/O
interaction is straightforward. Also, the original driveris very well written and the I/O code is
easy to read. In fact, the CiD code is even more verbose because individual register flags can be
only accessed separately (with a clean register file description). However, the programmer can
choose to represent individual flags as a single integer typeand read or write all flags at once.
The drawback is that this would prevent the compiler from performing consistency checks due
to lost layout information. Also, numerical (typically hexadecimal) numbers that represent a
combination of flag values are more difficult to read. From this point of view, more verbosity
means also clearer code.

62

5.4 Code Reuse and Separation of Concerns

Four templates have been written to support the creation of the USB mass storage and the
RTL8139 driver. The templatemodule.tl contains bootstrap code for a typical Linux module
and is included by every device driver. The blocklayer templateblocklayer.tl contains
boilerplate code to set up a block device and supports basic operations for the interaction with
the blocklayer. Similarly, theusb.tl template includes code to interact with the USB layer.
The USB mass storage driver uses all three aforementioned templates. The network driver uses
thepcinet.tl template which interacts with the network and the PCI layer.

Code Reuse

With the PCI template approximately 14% of the original NIC driver code could be reused. The
majority of code reductions is due to setup code for the PCI and network systems, including
acquisition and release of I/O space, setting up the interrupt handler, and initialization of sub-
system data-structures such as function pointer tables.
The result could be vastly improved by adding packet processing logic to the template. For
example, the Linux kernel distribution already features a full-fledged code template, but it is
intended to be used by 8139C+ based chipsets.2 However, there are, for instance, similarities in
the ring buffer management of the E1000, the 8319C+ chipset and other NICs, which could be
exploited.
In fact, better results have been achieved by Conwell with his NDL language (see [Conway and
Edwards, 2004]). The NDL driver for the NE2000 NIC comprisesonly half as many lines of
code as the original Linux driver. The corresponding NDL code template is more elaborate than
the CiD template and contains almost all of the OS-specific code. However, a deeper investi-
gation reveals that the template also contains device-specific code that cannot be reused in the
8139C+ driver, for instance, EISA bus initialization, or EEPROM I/O code. In contrast, the CiD
template contains only code that can be reused by all PCI-based NIC drivers.
With the USB and block layer templates, only 68 lines of code could be reused in the mass
storage driver. This result is very disappointing as it was expected that at least 10% of the driver
could be replaced with template code. In fact, a previous version of the blocklayer template
comprised a common strategy for processing requests on the I/O request queue. Although the
mass storage driver uses the same strategy, an attempt to merge the strategy with the original
driver failed. The reason is that the driver relies on information of individual requests, which
was abstracted away in the template. Further investigations on this matter could yield to better
results, but the overall potential for code reductions is probably low.
Another aspect that should be mentioned is that code reuse inthe kernel is already achieved with
low-level drivers, or subsystems, that provide services for high-level drivers. This further limits
the potential of code reuse.

2The template can be found in /drivers/net/pci-skeleton.c

63

Separation of Concerns

The initial motivation behind the template mechanism was tooffer a way to separate device-
specific from OS-specific code. With the current design this separation can only be achieved to
a minor degree. While the templates take care of mundane, reoccurring tasks such as initializa-
tion of subsystems and driver resources, device driver programmers still have to possess basic
knowledge about Linux device drivers and the subsystems they work with. However, instead of
simply copying similar device driver code, templates provide a cleaner way to reuse code. The
resulting code slightly improves in readability since all the boilerplate code resides in a separate
file.
A cleaner separation between device-specific and OS-specific code is demonstrated by the re-
cently developed driver generator system Termite [Ryzhyk et al., 2009b]. A Termite device
driver specification is divided into three parts, the deviceprotocol specification, the operating
systems specification and the device-class specification. CiD does not support this kind of divi-
sion, but future extensions could be considered.

5.5 Compiler Complexity

The CiD compiler features roughly 6913 physical source lines of code: 13% of the source code
account for concurrency algorithms, 6% constitute of hardware I/O code and 4% are made up by
the template compiler. The remaining 77% constitute of parsing, lexing, AST node definitions
and building routines, name analysis and (lots of) type checks. In conclusion, the proposed
language extensions and algorithms were, as expected, easyto implement.

5.6 Limitations

While the proposed language extensions and the CiD compilercan aid the programmer in de-
tecting mistakes (or preventing them), the complexity still remains. To some degree, the pro-
gramming model can be simplified by freeing the programmer from choices which can be made
automatically, such as the correct lock type or deferred work mechanism. However, correct CiD
code does not mean that a device driver is free from deadlocksor race conditions, the most
vicious types of bugs. The CiD compiler cannot perform checks on API constraints, and for
example, there is one non-critical path in the mass storage driver which (currently) leads to a
deadlock. Due to the high degree of concurrency, detecting faults like race conditions and dead-
locks is still very difficult. Also, once the kernel crashes,all information about the program state
is lost, which makes it even more difficult to locate deadlocks.
It was hoped that templates could simplify the programming of device drivers to some degree,
but the resulting drivers are still tightly coupled with theLinux driver model, as the poor code
reuse results show. However, more fleshed-out templates could yield to better results.
In conclusion, CiD can only assist the programmer in managing the high complexity of the pro-
gramming model. However, no significant reductions of the overall invovled complexity are
likely to be expected with further improvements and extensions.

64

CHAPTER 6
Related Work

In the last few years, there has been increasing effort to address the device driver reliability prob-
lem in the OS research community. In general, two key approaches can be identified. The first,
and more traditional, approach sees the causes of the reliability problem in weaknesses of cur-
rent OS and device driverarchitectures. The second approach recognizes the role oflanguages
and their contributions to the quality of device driver code.1

Microkernel architectures are the best-known technique tobuild reliable and fault-tolerant oper-
ating systems. Traditional microkernel systems, however,do not directly address the reliability
of device drivers and assume that they are inherently faulty. While this assumption has been
proven true for current device drivers, it may be very well invalidated in the future with new
techniques such as static source code verification and new domain-specific languages [Ryzhyk
et al., 2009a, Conway and Edwards, 2004, Mérillon et al., 2009, Ryzhyk et al., 2009b].
The concept of user-space drivers is not limited to microkernel-based architectures. Research
prototypes have shown that monolithic kernels, such as Linux, can be accommodated to running
user-space drivers [Renzelmann and Swift, 2009, Leslie et al., 2005]. Particularly notable ef-
forts are theDecaf Driversarchitecture and Leslie et al.’s adoption of the Linux kernel to support
user-space drivers.
While user-space drivers have a lot to offer, they do not address all problems that current de-
vice drivers show. As has already been pointed out in previous chapters, most general purpose
languages do not reflect special aspects of device driver development very well, or at all. Cru-
cial aspects such as hardware I/O and communication protocols are not part of most languages.
Noteworthy innovations in this area are hardware interfacedescription languages such asDevil
andNDL, which allow the programmer to specify register layouts, register I/O operations and
their side-effects [Mérillon et al., 2009, Conway and Edwards, 2004].

1It is important to note that the distinction between architecture and (programming) languages is rather arbitrary
and can get blurry. In fact, Hunt et. al demonstrate with their research OS “Singularity” that there is a synergy
between programming languages and operating system architecture, one aspect shaping the other [Hunt and Larus,
2007]. Nonetheless, due to the complexity of the device driver reliability problem, it is helpful to differentiate
between the two aspects.

65

Concurrency related bugs are very likely to be found in device drivers due to the complex pro-
gramming model. Successful attempts tosimplify the Linux concurrency model have been
demonstrated: TheDingo architecture demonstrates the benefits of event serialization at little
cost in performance [Ryzhyk et al., 2009a].
An orthogonal problem that device driver developers have toface iscollateral evolution. The
semantic patcher Coccinelle offers a powerful language to capture complex changes in the driver
codebase with a concise and intuitive syntax [Padioleau et al., 2008].

6.1 Device Driver Architectures

User-space Drivers

User-space drivers offer several benefits over kernel spacedrivers. The arguably most important
advantage is that user-space drivers can be written with thesame tools and programming lan-
guages as all other user-space applications. As a result, device drivers can be more easily tested
and debugged with available tools. While there are obvious gains in productivity, experimen-
tation with already existing programming languages is encouraged. Another advantage is that
faulty device drivers which are stuck in a deadlock or in an illegal state, can be recovered by
simply restarting the driver process [Herder et al., 2006].
The idea of user-space drivers has also found its way into theLinux kernel with the user I/O
(UIO) patch. The motivation behind the patch was to make driver programming less difficult
and more productive. However, UIO provides only rudimentary support for user-space drivers
and is geared towards less sophisticated embedded devices with less performance demands than
for example, network interface controllers.
There are two explanations why user space drivers have received only little attention in the ker-
nel community. First, a wide spread myth is that user-space drivers are inherently slow. While it
is true that early microkernel implementation such as Mach had slow user-space drivers due to
poorly designed IPC, modern microkernel architectures such as L4 have far better performance
[Härtig et al., 1997]. In fact, Leslie et al. have shown that monolithic kernels such as Linux can
be also accommodated to user space drivers with high performance requirements. Leslie et al.’s
user space architecture is a good example for this. Second, migration to user space drivers is a
difficult problem due to the enormous size of the existing code base. The DecafDrivers research
architecture shows that part of this process can be automated.

Leslie et al.’s User-Space Architecture

Figure 6.1 shows an overview of Leslie et al.’s user-space architecture [Leslie et al., 2005].
Device drivers gain access to device registers by mapping portions of physical (I/O) mem-

ory into their address space. The Linux kernel already provides this capability with themmap
system call and the/dev/mem file node which represents all available physical memory.
In order to support DMA operations, the system call interface has been extended with mapping
services that translate physical addresses into bus addresses and services that pin memory re-
gions. Pinning of DMA-mapped memory regions is essential toprevent memory pages from
being swapped during DMA transfers.

66

Figure 6.1: Structure of the user-space driver architecture by Leslie et al [Leslie et al., 2005].

Interrupts require special treatment because they can be only handled in kernel-space. In the
proposed architecture, user-space drivers register with an interrupt by calling theopen function
on the desired entry in the/proc/irq/n directory, wheren designates the interrupt number.
Once the driver callsclose, the interrupt handler is unregistered. The user-space driver re-
ceives interrupts by invoking theread system call on the file node. In the kernel, a semaphore
keeps track of the number of occurred interrupts and decrements with each read operation. If
there is no pending interrupt, the driver blocks until the device signals an interrupt which incre-
ments the semaphore.
Communication between the device driver and the kernel is the (performance) critical part of
the architecture. Requests from the kernel to the device driver and vice versa are encoded as
message descriptors which identify the operations that have to be performed. The descriptors
are shared between kernel and driver in lock-free circular buffers, one for each direction. Both,
kernel and user-space drivers, can directly access the descriptors without additional overhead.
Leslie et al. have evaluated their architecture with a blockdevice driver and a NIC driver, which
both have high performance requirements. The results are remarkable: the user-space drivers
performed nearly as well as the kernel space drivers with only minor processing overhead and
neglectable drops in throughput rates. This shows that, in theory, the Linux kernel could be
accommodated to support user-space drivers at neglectablecosts in performance considering the
benefits in security and reliability. However, in practice,the main disadvantage of the archi-
tecture is that all existing drivers have to be converted andexisting driver interfaces have to be
adopted to the proposed message interface.

67

Decaf Drivers

Decaf Drivers is a generic device driver architecture that supports the development of user space
device drivers in, conceptually, any programming language. Unlike the architecture proposed
by Leslie et al., Decaf Drivers also provides a migration path that makes it easier for kernel
developers to convert legacy device drivers into user-space drivers. Figure 6.2 shows an overview
of the Decaf Drivers architecture.

Figure 6.2: Decaf Drivers Architecture (adopted from [Renzelmann and Swift, 2009]).

A device driver is divided into three parts: a drivernucleus, a decaf driverand a driver li-
brary. The nucleus is a kernel module which contains performance critical code and makes the
user-level decaf driver compatible with the kernel. The decaf driver executes in user-space and,
thus, can be written in any language. The driver library contains support functions written in C.
Communication between the decaf driver, the driver libraryand the nucleus is achieved via ex-
tension procedure calls (XPCs). XPCs enable the transitionfrom user space to kernel space,
and vice versa, and are also used to allow the decaf driver to call native functions in the driver
library. XPCs are heavily optimized for run-time performance and for example, avoid unnec-
essary copying of data-structures. XPCs offer five services: control transfers, object transfers,
object sharing and synchronization and stubs. Control transfers emulate procedure call seman-
tics, object transfers marshal and unmarshal data structures. Object sharing, in conjunction with
synchronization, enable the decaf driver and the nucleus tosafely share data. Stubs contain code

68

for setting up and calling XPC services.
The tool DriverSlicer is a crucial part of the Decaf Drivers architecture which makes the transi-
tion from kernel-space to user-space drivers easier. The DriverSlicer tool is capable of partition-
ing a legacy C driver into code that has to reside in the nucleus or the decaf driver. In addition,
the tool also generates XPC stubs, but the programmer has to provide some annotations for mar-
shaling and unmarshaling kernel data structures.
The Decaf Drivers architecture was evaluated with five device drivers, including network drivers,
a sound driver, a USB 1.0 host controller, and a serial mouse driver. The decaf drivers were all
written in Java. It was also shown that even for performance-sensitive drivers, such as the E1000
network driver, there were overall minor performance penalties.
More interestingly, Renzelmann and Swift observe that Javadevice driver code benefits from
high-level features such as exception handling, generic standard libraries, object-orientation and,
possibly, garbage collection. However, benefits of garbagecollection have not been fully evalu-
ated because management of shared objects has to be manuallydone by the programmer. Error
handling in Linux device drivers can be improved with exception handling. For example, in
the course of rewriting the E1000 NIC driver in Java, Renzelmann and Swift found 28 cases in
which errors were originally ignored in the legacy code, butreported as uncaught exceptions by
the Java compiler in the new code. Also, reductions in drivercode size could be achieved with
code inheritance (object-orientation) and the use of Java collections.

Dingo

Dingo is a device driver architecture that addresses concurrency issues and OS protocol viola-
tions which occur within traditional device driver code [Ryzhyk et al., 2009a]. A Dingo driver
consists of two parts: (1) a protocol specification that defines message exchange between a de-
vice driver and the operating system and (2) a C implementation of the driver that processes the
defined messages. Unlike in a traditional Linux driver, the Dingo engine serializes all requests
(messages) that are passed to a driver, and therefore, thereis only one code path active at a time.
Verification of the protocol is done during run-time via a module called “protocol observer”.
In the Dingo model, the operating system and device drivers communicate viaportswhich rep-
resent bidirectional communication endpoints for exchanging messages. Each port is associated
with a protocol that defines order and timing in which messages may arrive as well as their
contents. Ports, messages and their protocols are described with a mix of textual and graph-
ical syntax. For example, the port declaration of an USB-to-Ethernet driver (presented in the
corresponding paper [Ryzhyk et al., 2009a]), is as follows:

component asix {
ports:

Lifecycle lc;
mirror Timer timer;

}

According to the component declaration, the Asix ethernet controller exports a Lifecycle
port and uses the Timer protocol provided by the OS, as indicated by themirror keyword.2.

2The complete declaration contains additional ports, but they are not shown in order to keep the example brief.

69

Every protocol consists of a list of messages and a state machine that defines how the messages
affect the state of the driver (or device). The message definition is defined textually, as the
following code fragment shows:

protocol Lifecycle {
messages:

in start();
out startComplete();
out startFailed(error_t error);
in stop();
out stopComplete();
int unplugged();

}

The corresponding state machine is described with the Statechart language, a graphical lan-
guage similar to state charts in UML, as shown in Figure 6.3. State transitions are triggered by
receiving or sending messages defined in the protocol. With statecharts it is possible to decom-
pose states into hierarchies. For example, the superstateconnected consists of three states,
starting, running andstopping, from which a transition to thedisconnected state
is possible.

Figure 6.3: Lifecycle state machine (adopted from [Ryzhyk et al., 2009a]).

It is the job of the programmer to translate a given device protocol into actual code. Dingo
features a customized C preprocessor with specialized macros for event (i.e., message) han-
dling.

70

A serious drawback of event-driven models is stack ripping (see Section 3.3). Because event
handlers may not block, requests that cannot be immediatelyhandled have to be divided among
event handlers, i.e., completion chains. To address this problem, Dingo offers language-extensions
and compiler support to allow the programmer to write completion chains in a sequential way.
For example, asynchronous function calls can be handled with theCALL as follows:

/* Repeatedly read from a device register */
do {

/* Wait 10 milliseconds, without blocking */
CALL (timeout, (10, ¬if), notif);

/* read status register */
...

} while (/* condition */)

The CALL macro calls an asynchronous timer service. The compiler takes care of saving
the state, i.e., the local function stack and the instruction pointer. Upon completion, the state
is restored, and execution continues after the CALL statement. Without this macro, the above
code would significantly increase in complexity and decrease in readability. This is because the
timeout event would have to be handled in a different event handler, and the loop would have to
be replaced with a counter, indicating the current iteration state.
Dingo also offers additional coordination statements. Forexample, messages that are defined
in the protocol can be received and sent with theAWAIT andEMIT macros, respectively. For
example,AWAIT(disconnected) would suspend the current execution trace, waiting for
the disconnect event.
The idea of protocols has also been introduced as part of the Singularity operating system [Hunt
and Larus, 2007]. The concepts are quite similar: In Singularity, message protocols are described
with channel contracts(a channel is just another name for a port), which define both,messages
for exchange, and a state machine. Unlike Dingo, Singularity uses static verification to ensure
protocol correctness.

Active Device Drivers

The Active Device Drivers architecture is a recent contribution by Ryzhyk et al. that introduces
the distinction between passive and active drivers [Ryzhyket al., 2010].
In a passive device driver architecture like in Linux, the OSpasses requests to device drivers by
concurrent invocation of the drivers’ entry points. If the device driver is busy processing other
requests, it still has to cope with more concurrent requestscoming in. In contrast, an active
driver is a sequential program with its own thread of controland can determine on its own when
it is ready to process the next type of request.
The communication model for an active driver is as follows. Requests are put into shared mem-
ory locations called mailboxes. Every mailbox correspondsto a particular type of request (such
as an I/O request or a configuration request) and may contain an arbitrary number of messages
of the same type. If an active driver is ready to process a request, then it issues a blocking read
operation on the corresponding mailbox. Thus, requests of the same type areserialized. When
a driver has finished a request, it puts a response message into the corresponding reply mailbox.

71

Because devices may have multiple, independent communication paths, such as the send and
transmit channels of a NIC, the Active Drivers also supportsmultithreaded request processing.
To this end, an active driver may createcooperative domainsin which threads that belong to the
same domain are scheduled cooperatively. Threads from different domains may run in parallel.

Discussion

Architectural modifications such as user-space drivers andalterations of the concurrency model
as in Dingo show promising potential to prevent frequent faults in device drivers and to make
driver programming more productive.
User-space Drivers.Theoretically, the concept of user-space drivers is superior to traditional
kernel-space drivers despite the performance overhead3. The free choice of development tools
and the safer programming environment allow for significantgains in productivity and show
potential to increase the reliability of device drivers. Clearly, compiler enhancements to fit the
kernel programming model (as demonstrated with CiD), cannot reach the flexibility of user-
space drivers. It must be stressed, however, that user-space drivers do not solve all aspects of the
device driver reliability problem but “merely” provide a reliable platform to build on. Support
for crucial aspects such as hardware I/O, concurrency and device protocols is complementary
to user-space drivers and necessary to further increase thequality of device driver code. CiD
shows potential to reduce driver faults with additional consistency checks for hardware I/O and
concurrency.
Dingo and Active Device Drivers.The event-driven approach in Dingo relieves the program-
mer from the complex multithreaded model and also addressesthe problem of stack ripping.
Similarly, the active device drivers architecture also reduces the complexity of multithreaded
drivers with its new communication model. With Dingo or Active Device Drivers, programmers
do not have to worry about locking and intertwined driver execution paths. In contrast to Dingo
and Active Device Drivers, CiD retains the multi-threaded concurrency model but provides a
safety net through static compiler checks. Detection of race conditions, inference of lock types
and illegal function calls (that lead to deadlocks), assistthe programmer in generating correct
concurrent driver code. Therefore, device drivers can be written in the classical multithreaded
model with some reassurance, but the complex program structure still remains.
An important feature that Dingo has to offer is the verification of the OS to driver interaction.
Dingo’s protocol specification capability is not to be confused with CiD’s protocol construct.
CiD protocols are solely used improve the accuracy of detecting race conditions in the data path
of a driver. Unlike Dingo, the CiD compiler cannot verify if the driver behaves correctly (with
respect to the device and OS protocols). Therefore, future versions of CiD should incorporate
more powerful protocols. Because of the multithreaded model, verification will be more difficult
to implement than in Dingo.
The Migration Problem. Any technology or paradigm that replaces a previous technique faces
the problem of migration. In the case of Linux device drivers, this problem is particularly serious

3According to Herder, the performance gap between kernel-space and user-space drivers might even narrow
further with hardware support for message passing [Herder,2010]

72

because of the enormous size of the code base.
Although the development of user-space drivers can be easedwith code generation tools like
DriverSlicer, there is still a lot of manual labor involved.Driver interfaces have to be adopted
and drivers have to be written in new languages. While Dingo provides some sort of plug-in
framework for the new architecture, leaving legacy driversuntouched, it requires the transition
to an event-driven model. However, the changes would be lesslabor-intensive than for user-
space drivers.
There are two possible scenarios in which new architecturescould be accommodated to the
Linux kernel and its drivers. In the first scenario, legacy drivers are left untouched and new
drivers are written with the new architecture. In the secondscenario, legacy drivers are adopted
to the new architecture. None of the two scenarios seem favorable, since either legacy code
has to be additionally maintained (old drivers should stillbenefit from kernel innovations), or
the entire driver code base has to be converted eventually. Considering that driver developers
are already busy keeping up with new hardware, migration is unlikely to happen until there are
more powerful driver code generators available. Also, the transition to a new paradigm poses
unknown risks not readily to be taken by pragmatic kernel developers.
While legacy driver code has to be converted into CiD as well,the changes are less labor inten-
sive since no architectural modifications are required and (most importantly) the programming
paradigm stays the same. Thus, CiD provides a smoother transition than any other of the pro-
posed architecture.

6.2 Domain-specific Languages

Devil

Devil is domain-specific language for describing the hardware I/O interface of a register-based
device [Mérillon et al., 2009]. Listing 6.2 shows a devil specification for a serial mouse which
will be explained in the course of this section.
Every Devil specification is based on three abstractions:ports, registersanddevice variables.
Ports unify port-mapped and memory-mapped I/O and enable uniform communication with a
device. Device variables form the visible interface of a device (in object-oriented terminology,
they are comparable to getter- and setter-methods) and are defined with Devil’sregisters, compa-
rable to private variables of a class, to access individual registers of a device. For each variable,
the Devil compiler generates a native I/O function that can be invoked in a device driver.

The first line in Listing 6.2 declares theport variablebase which is used to derive the sig-
nature register, configuration register, interrupt register and the index register of the device. The
device register layout consists of 4 banks, each of them being 8-bits in size, denoted withbit[8]
port @ {0..3}. Line 4 declares the signature register,sig_reg, which occupies the sec-
ond register bank (base@1). The corresponding variablesignature encapsulates access
to this register by specifying three constraints, indicated by the keywordsvolatile, write
trigger and the type constraintint(8).
The keywordvolatile indicates that two successive reads to the device signatureregister
may yield two different results. This information is important for the compiler, because read

73

Listing 6.1: Devil specification for the logitech busmouse (taken from [Mérillon et al., 2009])

1 device logitech_busmouse (base : bit[8] port @ {0..3})
2 {
3 // Signature register (SR)
4 register sig_reg = base @ 1 : bit[8];
5 variable signature = sig_reg, volatile, write trigger : int(8);
6

7 // Configuration register (CR)
8 register cr = write base @ 3, mask ’1001000.’ : bit[8];
9 variable config = cr[0] : { CONFIGURATION => ’1’, DEFAULT_MODE => ’0’ };

10

11 // Interrupt register
12 register interrupt_reg = write base @ 2, mask ’000.0000’ : bit[8];
13 variable interrupt = interrupt_reg[4] : { ENABLE => ’0’, DISABLE => ’1’ };
14

15 // Index register
16 register index_reg = write base @ 2, mask ’1..00000’ : bit[8];
17 private variable index = index_reg[6..5] : int(2);
18

19 register x_low = read base @ 0, pre {index = 0}, mask ’****....’ : bit[8];
20 register x_high = read base @ 0, pre {index = 1}, mask ’****....’ : bit[8];
21 register y_low = read base @ 0, pre {index = 2}, mask ’****....’ : bit[8];
22 register y_high = read base @ 0, pre {index = 3}, mask ’...*....’ : bit[8];
23

24 structure mouse_state = {
25 variable dx = x_high[3..0] # x_low[3..0], volatile : signed int(8);
26 variable dy = y_high[3..0] # y_low[3..0], volatile : signed int(8);
27 variable buttons = y_high[7..5], volatile : int(3);
28 };
29

30 }

operations may be cached for performance reasons. The keyword write trigger indicates
that writing to the register induces side-effects on the controller. Similarly, read trigger
would indicate side-effects after a read operation. Finally, the type of the variable is constrained
to an 8-bit integer.
The configuration register is located at memory bank three. The contents of the device register
are constrained with the bit pattern’100100.’. All bits of this register have a fixed value
(being either 1 or 0), however, the first bit can be of an arbitrary value, as indicated by a dot
’.’ . Asterisks (*) can be used to specify bit positions that should be extracted from a bit
vector. Lines 19-22 make extensive use of bit masks. This value is further constrained in the
corresponding variable definitionconfig, which expresses that bit 0 (cr[0]) can be either set
to CONFIGURATION or DEFAULT_MODE, which are both part of a type-safe enumeration.
Access to registers may be also predicated bypreactions(see lines 19-22). Some device designs
may use the same device memory location to represent different registers. According to the devil
specification, the logitech busmouse uses the first registerbank to represent x and y coordinates.

74

The value of the index register determines which coordinatecomponent gets stored in the first
register bank. For example, before accessing registerx_low, index is set to 0. Variables can
be grouped together to form a structure (see line 24). Upon loading of the structure, the corre-
sponding variables are loaded all at once.
Based on the detailed specification, the Devil compiler is capable to perform a series of con-
sistency checks which a C compiler cannot perform. For example, the Devil compiler ensures
statically that registers do not overlap (like the CiD compiler). If the programmer wishes, the
Devil compiler also generates run-time checks. For instance, when writing a non-constant value
to a variable, an optional run-time check verifies that the size is within the bounds of the corre-
sponding type.
In conclusion, Devil assists the programmer in generating more robust code. In fact, Mérillon
found that the probability of undetected errors is 1.6 to 5.2higher in C drivers than in Devil-
based drivers [Mérillon et al., 2009].

NDL

Like Devil, NDL allows the description of device register layouts. However, NDL offers addi-
tional features that simplify device driver development and is even capable of generating com-
plete (network) device drivers from code templates.
Every NDL specification consists of three elements: an interface description, a state machine
and a set of driver functions. Device register descriptionsare part of a device interface declara-
tion which may inherit other interfaces and template information. Listing 6.2 shows a fragment
of the NE2000 NIC NDL driver, adopted from the most recent NDLrelease [Conway, 2010].

The first line declares the device and inherits the code template and interface functions from
the built-in NetworkDevice declaration. Theioports section in the following line defines the
command register of the NE2000 controller. Thestop, start andtransmit each occupy
one bit and trigger a side-effect upon write access (as indicated by thetrigger keyword). The
dmaState compound field occupies three bits and defines constants thatencode different states
in the DMA engine.
The states of the NIC are defined after theioports declaration. Every state can be associated
with a list of actions that are performed at the transition, including transitions to other states.
States that are mutually exclusive are connected with the|| operator. In the example, the
controller can be either in the start or stopped stateand in one of the three DMA states.
Every NDL driver consists of a series of functions, in which the device specification can be
used to program the driver. To this end, NDL comprises a smallC-like subset with control
flow constructs, arbitrary-sized integers, arrays and integer arithmetic. The source code of the
NE2000 driver also reveals that there are synchronization statements which are not mentioned
in the original publication, such as waiting for a device register to change its value. Also, similar
to CiD’s synchronized statement,critical blocks are used to mark critical sections in
device driver code.
An interesting result is that the NDL driver for the NE2000 has only half of the size than the
Linux driver. On the one hand, this is because NDL code is moreterse than Devil, one the other
hand, code reductions can be also achieved with templates that contain boilerplate code.

75

Listing 6.2: Excerpt of NE2000 NDL interface (adopted from [Conway, 2010])

1 device ne2k : NetworkDevice {
2 ioports {
3 0x00: /* At offset 0x00 */
4 command = {
5 stop : trigger except 0,
6 start : trigger except 0,
7 transmit : trigger except 0,
8 dmaState : {
9 READING = #001

10 WRITING = #010
11 SENDING = #011
12 DISABLED = #1**
13 },
14 registerPage : int{0..2}
15 },
16

17 /* State machine */
18 state STOPPED {
19 goto DMA_DISABLED ;
20 stop = true ;
21 }
22 ||
23 STARTED { start = true ; }
24

25 state DMA_DISABLED { dmaState = DISABLED ; }
26 ||
27 DMA_READING { goto STARTED ; dmaState = READING ; }
28 ||
29 DMA_WRITING { goto STARTED ; dmaState = WRITING ; }
30 }

Coccinelle

Coccinelle addresses the problem of collateral evolutionsin device driver code (see Section 3.3
in Chapter 3) and has been successfully used to create a variety of kernel patches [Muller, 2010].
Coccinelle enables the programmer to specify C code changesin a declarative language called
the semantic patch language (SmPL). The syntax of SmPL resembles that of the well-known
GNU patch tool [Free Software Foundation, 2010], but is far more powerful because it also
reflects the structure of C code. Listing 6.3 shows an excerptfrom an official Coccinelle patch
that replaces direct access to the driver-specific data field(driver_data) of a generic device
handle (struct device) with newly introduced getter and setter functions.

The patch consists of two matching and transformationrules for reading from and writing
to the field, respectively. The beginning of each rule contains a header (delimited with the
“@@’ ’characters) followed by a list ofmetavariabledeclarations. The types of the variables are
essentially constraints to the pattern matcher. In the example, variableE represents an arbitrary
C expression andT denotes the name of a valid C type name. Similar to GNU patch, lines that

76

Listing 6.3: A simple Coccinelle patch that inserts a newly introduced getter function

@@
struct device *dev;
expression E;
type T;
@@

- dev->driver_data = (T)E
+ dev_set_drvdata(dev, E)

@@
struct device *dev;
type T;
@@

- (T)dev->driver_data
+ dev_get_drvdata(dev)

should be added and removed are prefixed with the minus and plus sign, respectively.
Pattern matching rules can be also combined to express more complex code changes as the patch
presented in Listing 6.4 shows. The purpose of the patch is toreplace access to the private data
field priv of a NIC handlenet_device with the getter functionnetdev_priv. Unlike
the previous example, the usage of the function is more restricted thanget_drv_data, since
it can be only applied to device handles that have been allocated with eitheralloc_netdev,
alloc_etherdevoralloc_trdev. The purpose of the first rule is to match these handles.
The third rule performs the actual replacement, but only if the first rule matches. More precisely,
the match is constrained with the variableT which is inherited from the first rule.

Listing 6.4: Metavariables and rule dependencies in Coccinelle

@ rule1 @
type T;
struct net_device *dev;
@@

dev = (alloc_netdev | alloc_etherdev | alloc_trdev)
(sizeof(T), ...)

@ rule2 depends on rule1 @
struct net_device *dev;
type rule1.T;
@@

- (T*) dev->priv
+ netdev_priv(dev)

77

When patching a large code base, the fact that the same computation can be expressed with
different syntactical variations complicates the creation of accurate patches. For example, a
NULL pointer condition can be expressed with an equality test or the short-hand operator!. To
address this problem, SmPL allows the programmer to abstract syntactic and control-flow vari-
ations into so-calledisomorphisms. An isomorphism expresses semantical equality for different
syntactical constructs. For example, the isomorphism for the aforementioned NULL pointer test
can be specified as follows:

@@
expression X;
@@
X == NULL <=> NULL == X <=> !X

With isomorphisms, patch authors can simply choose whatever syntax they find appropriate
while Coccinelle takes care of deriving the specified syntactical alternatives. This makes the
resulting patches more readable and more accurate.
The following example shows that isomorphism can be quite powerful and even capture control-
flow variations:

@ neg_if @
expression X;
statement S1, S2;
@@
if (X) S1 else S2 => if (!X) S2 else S1

The Coccinelle distribution already comes with a fairly comprehensive set of isomorphism,
allowing the patch author to focus on the specifics of a patch without distraction to mundane
details.
While Coccinelle has been developed to address the problemswith changing device driver in-
terfaces, its program matching capabilities can be also used to detect and fix source code bugs.
The official website has a quite impressive showcase of errordetecting patches, for example,
discovering null pointer dereferences and resource deallocation errors [Muller, 2010].

Discussion

Devil and NDL. Devil and NDL demonstrate the potential for fault prevention and fault de-
tection in low-level hardware code through low-level code generation and more rigorous type
checks. CiD’s register file construct has been inspired by these languages. However, in the
current state, CiD lacks advanced features to describe morecomplex device interfaces. For
example, Devil allows the programmer to specify pre- and postactions for accessing registers.
These features should be incorporated into CiD. Like NDL, CiD uses templates to generate de-
vice driver code. Judging from the latest NDL release, the template languages of NDL and CiD
are equally expressive. To exploit more code reuse opportunities, CiD’s template language could
be extended with conditional and control-flow statements. One problem with domain-specific
languages like NDL or Devil is that they make migration much more difficult than new driver
architectures. Unlike architectural modifications, however, new languages do not change legacy
drivers.
Coccinelle.Code reuse and collateral evolution are an orthogonal issuethat device drivers have

78

to face. CiD uses templates to loosen the dependency betweendevice drivers and kernel inter-
nals, but also to support code reuse. In addition, the built-in support for synchronization and
deferred work allows for some resilience to code changes. Coccinelle can be considered as a
powerful complementary approach that allows for more fine-grained changes than code tem-
plates and language extensions can provide.
One aspect that has to be addressed, however, is more flexibility for driver evolution. Currently,
the compiler infrastructure does not support multiple template and code generator backends for
different kernel versions. This should be considered for future versions.

6.3 Other Technologies

This chapter provided only a small selection of recent innovations and technologies in the area
of device driver development. Other important approaches are static verification, fault isolation
techniques and driver synthesis.

Static Verification

An example for static verification is Microsoft’s Static Driver Verifier (SDV) tool [Microsoft,
2011]. SDV analyses the code of a Windows driver and checks ifit violates any of the driver
API rules. Recently, similar work has been done by Witkowskiet al. with their Linux driver
verification tool DDVerify [Witkowski et al., 2007]. Both tools rely on counter-example-guided
abstraction (CEGAR), a technique which reports counterexamples that expose bad behavior in
program (device driver) code. In contrast, the CiD compilerverifies a predefined set of rules
and does not offer the flexibility to verify arbitrary API constraints. Also, the compiler does not
provide counter examples, which could be considered for future extensions.
However, static verification techniques could profit from language extensions that increase the
level of abstraction and thus make rule checking simpler. For example, the locks in a CiD driver
are always balanced and of the correct type.

Fault Isolation

In Linux, device drivers are part of the kernel and have the potential to crash the entire system
since there is no protection between the (faulty) drivers and unaffected parts of the kernel. The
purpose of fault isolation is to contain faults in the corresponding subsystems, i.e., the drivers,
where they can only do limited harm. Fault isolation can be achieved statically and/or during
run-time. Safe kernel programming languages are an exampleof static fault isolation. The
SPIN operating system relies on a safe subset of Modula-3 as implementation for kernel ex-
tensions. Like Linux kernel modules, these extensions can be linked during run-time into the
kernel. However, unlike C, the subset features pointer-safe casting, language-based isolation of
untrusted code and a secure dynamic linking. Similar to CiD,the safe Modula-3 subset features
a procedure modifier that indicates whether an operation canbe killed, which is important for
interrupt handling in SPIN. Another example is Sing#, an extension of the C# programming lan-
guage in which the Singularity operating system has been implemented [Hunt and Larus, 2007].
Unlike in conventional operating systems, processes are isolated by the memory-safe language

79

and not hardware protection mechanisms like MMUs.
Run-time fault isolation is achieved by architectural means. Microkernel architectures success-
fully build on the principle of fault isolation. A recent study by Herder et al., demonstrates the
robustness of the Minix microkernel operating system against faulty device drivers [Herder et al.,
2009]. It is important to note that run-time fault-isolation can be also achieved with the Linux
kernel, as the Nooks architecture demonstrates [Swift et al., 2002]. Nooks introduces protection
domains between the kernel and drivers, shielding them fromerrors such as memory corruption.
Regarding to the work presented in this thesis, fault isolation can be considered as a powerful
and probably necessary complementary approach. Even if language-extensions like CiD can
prevent certain mistakes, there is no guarantee that a CiD driver works correctly. Also, static
verification may not be able to detect all driver bugs. Another concern is that most drivers do
not deal with hardware faults properly (or at all), and, for example, could be stuck in an endless
loop when polling a faulty device. Therefore, fault isolation should be also considered for the
Linux kernel.

Driver Synthesis

The goal of driver synthesis is to automatically generate device driver code from formal speci-
fications, thus ensuring ”correctness by construction“. A recent contribution to driver synthesis
is Termite [Ryzhyk et al., 2009b], a tool which provides a clean separation between OS-specific
and device-specific code. Based on a device-class specification, the Termite engine synthesizes
driver code from these specifications. Thus, when porting a device driver to a different OS ar-
chitecture, only the OS specification has to be changed. Termite specifications are based on an
event-driven model.
Another approach has been presented by Bombieri et al., who automatically generate simple
device drivers based on register-transfer logic (RTL) testbenches [Bombieri et al., 2009].
Driver synthesis is a promising approach that could solve the device driver reliability problem.
In order to make driver synthesis possible, the formal gap between devices and operating system
has to be bridged with formal languages. In order to narrow the gap, hardware manufacturers
and OS developers have to work closely together and develop astandardized formal language
for describing device and driver models. With the advent of more expressive programming and
specification languages for device and driver development the gap can be narrowed further. It
might be tempting to regard CiD as a temporary solution, until fully functional driver generators
are available. However, driver generators can benefit from simplified programming models (or
more powerful compilers). For example, protecting critical sections in CiD is simply a matter of
placingsynchronized blocks, which simplifies code generation.

80

CHAPTER 7
Conclusion

The central question of this thesis was how device driver programming can be made more ro-
bust. Unlike other research approaches, this thesis investigated and demonstrated possibilities to
improve the current driver programming model without revolutionary changes. The prototype
language CiD shows promise and demonstrates how this can be achieved in principle.
However, there is much room for improvement and, despite alleffort, this thesis just scratched
the surface. Section 7.2 shows how the work can be continued.

7.1 Brief Summary and Review of Results

The current Linux programming model lacks support for:

• Concurrency and synchronization

• Hardware I/O

• Code reuse and separation of concerns

Concurrency faults, i.e., race conditions and deadlocks, are very common in device driver
code: A device driver has to deal with multiple requests at the same time and synchronize
concurrent activities. In addition, concurrent driver code has to satisfy concurrency model con-
straints such as never calling a blocking function in atomicor interrupt context. Until now, the
programmer had to verify these rules by hand. With CiD, it hasbeen successfully demonstrated
that the concurrency model can be incorporated into a C compiler with only minor extensions
to the programming language, i.e., concurrency protocols,synchronization blocks and func-
tion context modifiers. As demonstrated with two converted drivers, the CiD compiler always
chooses the correct lock type, eliminating one potential cause for a deadlock. Also, the compiler
ensures that all blocking operations are safe in the currentexecution trace, further mitigating the
potential for deadlocks. Finally, race conditions in the data-flow of the converted device drivers
can be detected with a false positive rate of 6% to 21%.

81

Hardware I/O is a particularly error-prone aspect of devicedriver code since minor mistakes
such as swapping two bits cause the driver to malfunction andare undetected by the compiler.
CiD’s hardware I/O features assist the programmer in writing correct low-level code with the
generation of bit manipulation code, automatic byte order conversions and consistency checks
on data layouts. However, compared to more elaborate approaches such as NDL and Devil, CiD
provides only a small hardware I/O kernel with need for optimization. In the converted NIC
driver, there is a factor of 1.5 increase on the number of register I/O operations.
An important aspect that the current model does not support is separation of concerns and fine
grained code reuse. As a result, device driver code includesOS-specific and device-specific
code, leading to hard to maintain code [Padioleau et al., 2006]. The Termite project shows that
separating those two aspects is possible [Ryzhyk et al., 2009b]. With CiD, a code template
mechanism was used capture and reuse OS-specific code. As a result, the source code size of the
NIC driver could be reduced by about 14%, but no code reductions were achieved for the mass
storage driver. Also, a clean separation between OS-specific and device-specific code could not
be achieved. NDL and Termite demonstrate that this is feasable, but at a change in the program-
ming paradigm.
Another important aspect is that separation of concerns is key to addressing OS and device pro-
tocol violations. For example, in CiD, OS protocol constraints can be captured in templates or
within the compiler as rules to the static concurrency analysis. However, CiD does not offer
the flexibility to check API rule violations such as DDVerify[Witkowski et al., 2007]. More
importantly, CiD does not offer a way to specify the operations of a device in a clean way such
as Dingo [Ryzhyk et al., 2009a].
Despite CiD’s limitations, I believe that the reliability of device drivers can be improved with
the proposed language extensions. Investigations on driver reliability show that simple mistakes
(such as calling a blocking function in atomic context) are surprisingly common [Ryzhyk et al.,
2009a, Padioleau et al., 2006]. With CiD these faults are prevented by design. Also, compared
to other (and more elaborate) approaches, the transition from C to CiD is seamless and can be
automated with Coccinelle.

7.2 Future Directions

The next steps that should be taken are to incorporate the proposed language elements and the
compiler modifications into GCC and to patch the driver tree with the extensions. A good start-
ing point are CiD’s function modifiers, which, together witha simple static call graph analysis,
have the potential to prevent many deadlocks. Also, critical sections and deferred code in legacy
drivers could be replaced with synchronized and deferred blocks, respectively. Coccinelle could
be used to perform these conversions automatically on legacy device driver code.
Also, the existing compiler infrastructure should be further maintained because it provides an
easy and fast way to test new ideas for language refinements and additions.

82

Language Improvements and Additions

Current additions to the language should focus on improvingthe core elements. What follows
is a list for the most important improvements that should be made in the future. The individual
tasks are ranked by priority in descending order.

Hardware I/O

1. Support register group aliases to allow reading or writing to all registers in the group with
one statement.

2. Reduce the number of redundant read-modify-write operations by using the results of the
concurrency analysis.

3. Support preactions and postactions for register accesses

4. Support overlay registers and bank switching

5. Support inheritance of descriptor layouts.

Concurrency and Synchronization

1. Make the syntax of protocols less cumbersome and verbose by adding a simple algebra
for combining and reusing entry point lists. Also, support hierarchic composition of states
to reduce typing amount.

2. Add first-class citizens for coordination, i.e., completions and wait-queues.

3. Add named synchronization blocks to override automatic locking instantiation (might be
useful for shared locks, e.g., for block devices).

4. Add full support for closures (as demonstrated by deferred work) for asynchronous func-
tions.

5. Add “deferred” function modifier to reduce the number of generated deferred work in-
stances.

6. Evaluate elements from data-flow oriented languages to simplify drivers for message-
based devices.

Templates

1. Improve current templates to yield better results for code reuse. Add device-independent
logic to the NIC template to demonstrate feasibility.

2. Add support for different template versions to ensure backwards compatibility.

3. Extend the template language with conditional statements and loops to make template
code more flexible.

83

Compiler Improvements

Although the current compiler implementation is simple andoverall easy to maintain, more
effort has to be put into making the analyses more resilient to (minor) language changes. Thus,
current efforts should focus on improving the current compiler architecture. Following steps
should be taken in the future:

1. Add a simplified intermediate language to make analyses more resilient to language changes.

2. Add more unit tests and test cases.

3. Document dependencies between analyses and which attributes they calculate.

4. Integrate a generic tree matcher like BURG into the compiler to simplify the atomic ex-
pressions and hardware I/O generator.

7.3 Lessons Learned

The initial goal of this thesis was to design an extensible domain specific language for the auto-
matic generation of Linux device drivers. Unsurprisingly,this has proven to be an impossible en-
deavor because the prerequisite for such a language is a full-fledged domain model of computer
hardware. Such a model could not be engineered, partly because of the intimidating amount of
hardware specifications and different technologies, and partly due to the lack of experience in
the field. The overwhelming complexity of the Linux kernel was yet another difficult obstacle
that had to be faced.
The idea for simple language extensions as proposed in CiD has been developed quite early in
the course of this work. At the beginning it seemed too trivial to be seriously considered. How-
ever, as time was passing by, compromises had to be made. As itturns out, it is worth to pursue
even simple ideas and to think about them thoroughly.
Writing the compiler was another valuable experience. There have been two attempts. The first
attempt was made with the compiler generator system Eli [University of Colorado at Boulder,
2011]. While the generator features a comprehensive set of powerful tools and specification
languages, I came to the conclusion that it is difficult to work with, especially for newcomers
that experiment with language design. The second attempt with PLY was an overall pleasant
experience because it enabled me to write the compiler in a familiar programming paradigm.
Undoubtedly, the most challenging aspect of writing a compiler is to ensure completeness of all
analyses. Even with languages like CiD that have small and simple grammars, it can be difficult
to foresee every possible way a language construct can be used in a program. While today’s tools
and programming languages allow quick prototyping of a compiler, ensuring completeness and
correctness of all analyses is the real difficult part.
Most importantly, writing kernel code has often proven to bea frustrating but also a rewarding
experience. Writing kernel code takes a lot of discipline that is worth obtaining to be prepared
for future challenges.

84

7.4 Compiler Availability

The CiD compiler and the driver files are hosted as a Sourceforge project and can be obtained at
http://sourceforge.net/projects/cdrivers. For verification purposes, the dis-
tribution includes a snapshot,thesis.tar, of the compiler and driver files which were used
to obtain the experimental data presented in Chapter 5. Further information on the compiler and
latest updates can be found on the project website.
Contributions are very welcome!

85

Bibliography

[Adya et al., 2002] Adya, A., Howell, J., Theimer, M., Bolosky, W. J., and Douceur, J. R.
(2002). Cooperative Task Management Without Manual Stack Management. InProceed-
ings of the General Track: the 2002 USENIX Annual Technical Conference (USENIX-02),
pages 289–302.

[Axelson, 2010] Axelson, J. (2010). USB Mass Storage DeviceProblems. Available online:
http://lvr.com/device_errors.htm.

[Beazley, 2010] Beazley, D. (2010). PLY: Python-Lex-Yacc. Available online:
http://dabeaz.com/ply/.

[Bellard, 2011] Bellard, F. (2011). QEMU: open source processor emulator. Available online:
http://www.qemu.org.

[Bombieri et al., 2009] Bombieri, N., Fummi, F., Pravadelli, G., and Vinco, S. (2009). Correct-
by-construction generation of device drivers based on rtl testbenches. InDesign, Automation
and Test in Europe, DATE 2009, pages 1500–1505.

[Bovet and Cesati, 2005] Bovet, D. P. and Cesati, M. (2005).Understanding the Linux Kernel,
3rd Edition. O’Reilly Media.

[Chou et al., 2001] Chou, A., Yang, J., Chelf, B., Hallem, S.,and Engler, D. (2001). An Empir-
ical Study of Operating System Errors. In Ganger, G., editor, Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP-01), volume 35, 5 ofACM SIGOPS Op-
erating Systems Review, pages 73–88.

[Conway, 2010] Conway, C. L. (2010). NDL: The Network DeviceLanguage, official website.
Available online: http://cs.nyu.edu/ cconway/ndl.

[Conway and Edwards, 2004] Conway, C. L. and Edwards, S. A. (2004). NDL: A Domain-
Specific Language for Device Drivers.ACM SIGPLAN Notices, 39(7):30–36.

[Cooperstein, 2010] Cooperstein, J. (2010).Writing Linux Device Drivers: A Guide With Exer-
cises.

[Dharm, 2010] Dharm, M. (2010). Observed USB Mass Storage Target Deviations from
the Published Specification. Available online: http://one-eyed-alien.net/ mdharm/linux-
usb/target_offenses.txt.

87

[Eklektix, 2010] Eklektix, I. (2010). Linux Weekly News. Available online: http://lwn.net.

[Free Software Foundation, 2010] Free Software Foundation(2010). GNU Patch. Available
online: http://savannah.gnu.org/projects/patch/.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). The Visitor
Pattern. InDesign Patterns. Elements of Reusable Object-Oriented Software, pages 331–344.
Addison-Wesley.

[Härtig et al., 1997] Härtig, H., Hohmuth, M., Liedtke, J., Schönberg, S., and Wolter, J. (1997).
The Performance ofµ-Kernel-based Systems. InProceedings of the 16th Symposium on
Operating Systems Principles (SOSP-97), volume 31,5 ofOperating Systems Review, pages
66–77. ACM Press.

[Herder, 2010] Herder, J. N. (2010).Building A Dependable Operating System: Fault Tolerance
in Minix 3. Vrije University Amsterdam.

[Herder et al., 2009] Herder, J. N., Bos, H., Gras, B., Homburg, P., and Tanenbaum, A. S.
(2009). Fault Isolation for Device Drivers. InIEEE/IFIP International Conference on De-
pendable Systems and Networks, pages 33–42.

[Herder et al., 2006] Herder, J. N., Bos, H., and Tanenbaum, A. S. (2006). A Lightweight
Method for Building Reliable Operating Systems Despite Unreliable Device Drivers. Tech-
nical Report IR-CS-018, Department of Computer Science, Vrije Universiteit.

[Hsieh et al., 1995] Hsieh, W., Fiuczynski, M., Garrett, C. D., Savage, S., Becker, D., and Ber-
shad, B. N. (1995). Language Support for Extensible Operating Systems. Technical Report
TR-95-11-02, University of Washington, Department of Computer Science and Engineering.

[Hunt and Larus, 2007] Hunt, G. C. and Larus, J. R. (2007). Singularity: Rethinking the Soft-
ware stack.Operating Systems Review, 41(2):37–49.

[Intel, Corp., 2009] Intel, Corp. (2009). PCI/PCI-X Family of Gigabit
Ethernet Controllers Software Developer’s Manual. Available online:
http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf.

[Jonathan Corbet and Kroah-Hartman, 2005] Jonathan Corbet, A. R. and Kroah-Hartman, G.
(2005).Linux Device Drivers, Third Edition. O’Reilly Media.

[Kadav et al., 2009] Kadav, A., Renzelmann, M. J., and Swift,M. M. (2009). Tolerating hard-
ware device failures in software. InProceedings of the 22nd ACM Symposium on Operating
Systems Principles 2009, pages 59–72.

[Kroah-Hartman et al., 2009] Kroah-Hartman, G., Corbet, J., and McPherson, A. (2009). Linux
Kernel Development: How Fast it is Going, Who is Doing It, What They are Doing, and Who
is Sponsoring It. Linux Foundation.

88

[Landley, 2008] Landley, R. (2008). Where Linux Kernel Documentation Hides. InProceed-
ings of the Linux Symposium, volume 2, pages 7–19.

[Leslie et al., 2005] Leslie, B., Chubb, P., Fitzroy-Dale, N., Götz, S., Gray, C., Macpherson, L.,
Potts, D., Shen, Y.-T., Elphinstone, K., and Heiser, G. (2005). User-Level Device Drivers:
Achieved Performance.J. Comput. Sci. Technol, 20(5):654–664.

[Li et al., 2004] Li, Z., Lu, S., Myagmar, S., and Zhou, Y. (2004). CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System Code. InOSDI, pages 289–302.

[Mérillon et al., 2009] Mérillon, F., Réveillère, L., Consel, C., Marlet, R., and Muller, G.
(2009). Devil: An IDL for Hardware Programming.

[Microsoft, 2011] Microsoft, C. (2011). SDV: Static DriverVerifier. Available online:
http://msdn.microsoft.com/en-us/library/ff552808

[Muller, 2010] Muller, G. (2010). Coccinelle, official website. Available online:
http://coccinelle.lip6.fr.

[Padioleau et al., 2008] Padioleau, Y., Hansen, R. R., Lawall, J., and Muller, G. (2008). Docu-
menting and Automating Collateral Evolutions in Linux Device Drivers. InProceedings of
the EuroSys 2008 Conference, pages 247–260. ACM.

[Padioleau et al., 2006] Padioleau, Y., Lawall, J. L., and Muller, G. (2006). Understanding
Collateral Evolution in Linux Device Drivers. InEuroSys, pages 59–71.

[Realtek, 2002] Realtek, R. S. C. (2002). Realtek 3.3V Single Chip fast Ethernet Controller
with Power Management. RTL8139C(L).

[Redpill Linpro AS, 2010] Redpill Linpro AS (2010). The Linux Cross Reference. Available
online: http://lxr.linux.no.

[Renzelmann and Swift, 2009] Renzelmann, M. J. and Swift, M.M. (2009). Decaf: Moving
Device Drivers to a Modern Language. InProceedings of the USENIX Annual Technical
Conference.

[Ryzhyk et al., 2009a] Ryzhyk, L., Chubb, P., Kuz, I., and Heiser, G. (2009a). Dingo: Taming
Device Drivers. InEuroSys, pages 275–288.

[Ryzhyk et al., 2009b] Ryzhyk, L., Chubb, P., Kuz, I., Sueur,E. L., and Heiser, G. (2009b).
Automatic Device Driver Synthesis with Termite. InSOSP, pages 73–86.

[Ryzhyk et al., 2010] Ryzhyk, L., Zhu, Y., and Heiser, G. (2010). The case for active device
drivers. InProceedings of the 1st ACM SIGCOMM Asia-Pacific Workshop on Systems, pages
25–30.

[Spaans, 2010] Spaans, J. (2010). The Linux Kernel Mailing List Archive. Available online:
http://lkml.org.

89

[Swift et al., 2002] Swift, M. M., Martin, S., Levy, H. M., andEggers, S. J. (2002). Nooks: an
architecture for reliable device drivers. InProceedings of the 10th ACM SIGOPS European
Workshop, pages 102–107.

[University of Colorado at Boulder, 2011] University of Colorado at Boulder, University
of Paderborn, M. U. (2011). Eli: An Integrated Toolset for Compiler Construction. Available
online: http://eli-project.sourceforge.net/.

[Venkateswaran, 2008] Venkateswaran, S. (2008).Essential Linux Device Drivers. Prentice
Hall International.

[Witkowski et al., 2007] Witkowski, T., Blanc, N., Kroening, D., and Weissenbacher, G. (2007).
Model checking concurrent linux device drivers. In22nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2007), pages 501–504.

90

