FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Language Support for Linux
Device Driver Programming

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering and Internet Computing
eingereicht von

Gunter Anton Khyo
Matrikelnummer 0326024

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung
Betreuer: Ao.Prof. Dr. Dipl.-Ing. M. Anton Ertl

Wien, 30.03.2011

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbelit

Gunter Anton Khyo

Hiermit erklare ich, dass ich diese Arbeit selbsténdig assf habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstandig angegeben hatd dass ich die Stellen der Arbeit
- einschlieRlich Tabellen, Karten und Abbildungen -, digleren Werken oder dem Internet
im Wortlaut oder dem Sinn nach enthommen sind, auf jedenurédlr Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Abstract

The success of any commodity operating system is deternfipdédde quality of device driver
support. Over the last decades, the computer hardwaretigchess been advancing at a rapid
pace, putting high pressure on device driver developerouAb2% of the Linux kernel code
is comprised by device drivers, accounting for close to 7illam lines of code. While man-
aging such a huge code base is a challenge on its own, Linugeddkiver developers have to
overcome additional obstacles. The complex, multithrdg@tlegramming model of the kernel
creates a high potential for bugs and many of them resultrinekerashes. Device drivers con-
stitute the largest and most unreliable component of thedker

This thesis analyses the root causes of the device driviebilély problem, and demonstrates
how the current driver programming model can be improvedssisa programmers in creating
better driver code. To examine and test feasible improvésnenprototype language (called
CiD) based on a subset of C was designed with the specialremgents on Linux device
driver development in mind. CiD features syntactical addg for three essential device driver
code aspects: concurrency, synchronization and hardwanencnication. The compiler is pro-
grammed with basic rules of the concurrency model of theedeand is able to detect simple but
common mistakes that lead to deadlocks. Additional cogrsist checks support the program-
mer in generating correct hardware 1/0 code.

Two device drivers have been converted into CiD code to hestanguage extensions and the
implementation of the compiler. The results for concuryeaad synchronization are satis-
fying: race conditions in the data-flow are reported with ladgositive rate of 6% to 21%.
The compiler also generates correct concurrency and syniziation code, thus mitigating the
potential for deadlocks. The results show that hardwaregé@erator leaves much room for
improvement, since it generates 1.5 times more 1/O operatioan the original driver. Related
approaches show that further optimizations can reduceape g

In conclusion, we find that device driver programming can lael@more robust with only minor
alterations to the existing programming model and littlenpder complexity.

Kurzfassung

Die immer rasanter fortschreitende Entwicklung der Coraghardwareindustrie macht die Gerate-
treiberentwicklung zu einer grof3en, wenn nicht der gréf3temausforderung in der Betriebssys-
tementwicklung. Der aktuelle Linuxkernel umfasst mittteile 7.4 Millionen Zeilen Geréate-
treibercode, das sind in etwa 52% des Gesamtcodes. Wahieekdadtung von Gerétetreibern
durch die enorme CodegroRRe zu einer Herausforderung wsirdchon die Entwicklung eines
einzelnen Geratetreibers oftmals eine schwierige Angellegit. Neben der prinzipiellen Schwierig-
keit von hardwarenaher Programmierung, verkomplizieg zlagrundeliegende Programmier-
modell die Treiberentwicklung. So ist Geréatetreibercoéen Linux hochgradig nebenlau-
fig, wobei Programmierer auf zusatzliche Linux-spezifisBegeln achten missen, um haufig
auftrentede Fehler, wie Deadlocks und Race Conditions maeiden. Geratetreiber sind somit
die unzuverlassigste Komponente des Kernels.

Im Zuge dieser Arbeit wurde CiD, eine Erweiterung der Prograersprache C, sowie der zuge-
hoérige Compiler, implementiert, um die Geratetreiberécitlung robuster zu gestalten. CiD bi-
etet Sprachkonstrukte flur Nebenlaufigkeit, Synchrorosatind Hardwarekommunikation. Der
Compiler wurde mit Regeln des Treiberprogrammiermodedissehen, um haufig auftretende
Fehler wie z.B. Deadlocks wahrend der Entwicklung zu erkenn

Um die Sprache und den Compiler zu testen, wurden zwei Gezifiter konvertiert. Die Ergeb-
nisse sind grof3teils zufriedenstellend: Race conditiomdatenfluss eines Treibers werden
mit einer “False-Positive“-Rate von 6% bis 21% erkannt. dhudie korrekte Generierung von
Synchronisationscode werden haufig auftretende Ursacin@ebdlocks vermieden. Die Hard-
warekommunikation bedarf einer Uberarbeitung: Der Codegsor erzeugt zwar korrekten
Code, allerdings werden 1.5 mal mehr Hardwareoperatiomevergleich zum urspriinglichen
Code erzeugt. Verwandte Arbeiten zeigen jedoch, dass #iggiverbesserungen moglich sind.
Zusammenfassend lasst sich das Programmiermodell métobien Mitteln robuster gestalten,
wobei der Implementierungsaufwand fiir die Erweiterungshr snoderat ist.

Acknowledgements

Writing this thesis has been a tremendous experience arkkritar end of a very difficult but
fruitful period in my life. The lessons | learnt when writiniigis thesis are invaluable and will
guide me through the rest of my professional and persoral lif

| would like to thank my supervisor Anton Ertl for his counseld encouragement, and, espe-
cially for his unlimited patience. | could always rely on hidlso, | would like to thank Leonid
Ryzhyk who encouraged me to pursue my project and who offesadsel.

Last but not least, | would like to thank my parents and graneipts for giving me continous
and unconditional support for my thesis. Without them, | lddwave never finished my studies.

Gunter Anton Khyo
Vienna, April, 2011

Vii

Contents

List of Figures

List of Tables
1 Introduction
2 Linux Device Drivers

2.1
2.2
2.3
2.4
2.5

Contents

What Are Device Drivers?
A Simple Device DriverModel
The Linux Device Driver Architecture
The Linux Device Driver Programming Model

Further Reading . . .

The Device Driver Reliability Problem

3.1 Device Protocol Violations
3.2 Operating System Protocol Violations
3.3 Programming Model Weaknesses «..
3.4 Towards Solving the Reliability Problem

The CiD Programming Language

Basic Language Design
SupportforCode Reuse
Support for Concurrency and Synchronization
SupportforHardware 1/O

4.1
4.2
4.3
4.4
4.5

Implementation . . .

Experimental Evaluation

5.1
5.2
5.3
54
55

Methodology

Concurrency and Synchronization
Hardware I/O e 61
Code Reuse and Separationof Concerns

Compiler Complexity

21
21
23
25
31

33
33
35
36
45

55
55
56

63

5.6 Limitations e e e e 46

6 Related Work 65
6.1 Device Driver Architectures Lo 66
6.2 Domain-specific Languages. e e e 73
6.3 Other Technologies 79

7 Conclusion 81
7.1 Brief Summary and Reviewof Results 81
7.2 Future Directions 82
7.3 LessonslLearned 4
7.4 Compiler Availability 85

Bibliography 87

List of Figures

2.1 Top-down view of the data flow between an application,uhéerlying operating
system, the device driver and its associated device. 8

4.1 Kernel locking primitives and their uses in device driveSpinlocks and mutexes
are the most commonly used lock types. 44

5.1 Compiler-generated conflict graph of the 8139C+ driB&re boxes represent driver

entry points, red edges denote unsynchronized data paths.... 57
6.1 Structure of the user-space driver architecture byi¢ eslal [Leslie et al., 2005]. . 67
6.2 Decaf Drivers Architecture (adopted from [Renzelmamd Swift, 2009]). 68
6.3 Lifecycle state machine (adopted from [Ryzhyk etalQ®4). 70

3.1

4.1
4.2
4.3
4.4

5.1
5.2

List of Tables

Types of concurrency faults in device drivers (adoptethf[Ryzhyk et al., 2009a]). 26

Atomic code patterns the CiD compiler recognizes, apit transformations. . . . 46
Data-layout of the SCSI_WRITE12command 47
Overview of the most important compiler source files. b5l
Results of the concurrency analysis for the programsting 4.12 53
Statistics on concurrency and synchronization obdaivieh the CiD compiler . . . 56
Code statistics of the converted and original drivers.... 61

CHAPTER

Introduction

Due to the enormous growth of the computer hardware indastdythe massive proliferation of
computer devices, device driver development advancesatydast pace. A recent publication
of the Linux Foundation reports that the code size of thedeanctreased by over 70% in only
5 years (from the year 2004 to 2009) [Kroah-Hartman et al0920 The latest Linux kernel
version 2.6.37 now includes close to 14 million lines of co@=vice drivers constitute about
7.4 million lines of code, accounting for 52% of the kernalis® code.

While the number of available of Linux device drivers ismigiat an enormous rate, the relia-
bility of device drivers has been of particular concern ia @S research community. Device
drivers have a bad reputation for being unreliable, andpralieg to numerous investigations,
are held responsible for the majority of (operating) systeashes [Ryzhyk et al., 2009a, Herder
et al., 2009, Renzelmann and Swift, 2009]. In 2001, Chou.aksakaled in a detailed study on
operating system errors, that the bug density of Linux dedidvers is up tsevertimes higher
than in all other OS components [Chou et al., 2001].

Device driver programming is challenging: hardware prote@re steadily increasing in com-
plexity, but also the kernel and its driver interfaces ardarrconstant change. In addition, the
complex multithreaded Linux device driver programming reloguts a heavy burden on pro-
grammers (Chapter 2 provides a short overview of driver ianogning essentials). An analysis
of the root causes for device driver defects reveals thgiatifior essential driver aspects such
as concurrency and hardware I/O is very limited (see Ch&ptlrhe Device Driver Reliability
Problem”).

This motivates the development of the CiD (C for Drivers)gresnming language which offers
language-support for concurrency and hardware 1/O (sept€hd). Unlike other research ap-
proaches (see Chapter 6), CiD does not change the drivergonoging paradigm, but shows
how language-support and static verification can aid thgnaramer in generating device driver
code. The proof of concept implementation comes with twaeded CiD device drivers which
demonstrate that the language extensions and the compélgoaverful enough to detect race
conditions and to prevent simple, but common mistakes |¢laatto deadlocks (see Chapter 5).

CHAPTER

Linux Device Drivers

This chapter covers the essentials of Linux device driveg@mming. The basic architecture
of device drivers is explained with a simple model of the atiag system and the underlying
hardware. The main focus of the discussion lies in the progriag model of Linux device
drivers which is fundamentally different from that of usgrace applications. Important aspects
such as concurrency, synchronization and memory manageanemliscussed. The concepts
introduced in this chapter give an understanding of theiapeequirements on device driver
programming and the inner workings of a device driver.

2.1 What Are Device Drivers?

A device driver is a software component that controls theratjmns of a physical or virtual
device. Physical devices are actual hardware componedtpenfiorm functions on behalf of
the user or operating system, for example capturing audioriating a file. Virtual devices
have no physical representation and only exist in softwareare as useful as physical devices.
Examples of common used virtual devices are RAM disks, so#WRAIDs, virtual network
adapters and so on.

It is helpful to categorize devices that offer the same sdeafures into device classes. The
actualmechanismghat realize the interface of a class are encapsulated in the corresmpndi
device driver. This enables operating systems to treatsltds that belong to the same class in
a uniform way. Applications and other parts of the operatiggtem can then issue requests to
a device via its device class interface without knowing himg about the details of the device
chipset. A device driver can be seen as an interpreter whigtslates class-specific requests
into actual device-specific commands.

Device drivers are not restricted to the handling of a simigleice, in fact, many device drivers
are capable of handling multiple devices belonging to thmesdevice class. For example, a
single generic USB input driver may handle a wide range ohifeated) input devices like
mice, joysticks or keyboards at the same time.

2.2 A Simple Device Driver Model

Figure 2.1 depicts a simple model that illustrates the data lfletween a UNIX-style operating
system, a device driver and its associated device.

Application

oo | Systemcall Interfface |

Virtual Filesystem

Device Driver

HAL

DMA
Controller

Controller CPU

Registers

Figure 2.1: Top-down view of the data flow between an appboatthe underlying operating
system, the device driver and its associated device.

One of the key philosophies of the UNIX operating system & tteverything is a file".
Linux, being a UNIX derivate, also embodies this idea. Apgions can gain access to a par-
ticular device by invoking generic 1/0O operations on the filat represents that device. For
example, the output data of a mouse can be retrieved by gt dev/ i nput / nouse file
on any recent Linux system. In practice, the philosophy isahMvays obeyed. For example,
network devices are not represented as files bunagr f aces, and thus, requests do not pass
the VFS. The same is also true for configuration requestshaatge the operational parameters

8

of a device. For the remainder of the discussion, we assuategfuests are passed through the
file system. When starting a file operation, the applicatiaa to make use of the system call
interface. When issuing the system call, a mode switch iatadd mode is performed and the re-
quest is further passed to the virtual file system. Every fiedn associated driver identifier (the
major numberof the device), that points to the actual driver of the devithe request is then
passed to the found device driver. The device driver themstates the request into a device-
specific command. The controller of a device is responsimdrinslating device commands
into electrical signals. For example, a hard-drive-disktoaller translates seek operations into
mechanical movements of the disk arm(s). Access to the lduamdware is supported by the
Hardware Abstraction Layer (HAL). The HAL provides suppfmt low-level hardware facili-
ties like DMA, device 1/O and interrupt handling.

How devices are accessed is dependent on thethesdevice is connected to. For example,
devices that connect to USB function significantly diffdréran devices that are attached to the
PCI bus family even if they belong to the same device class.

Both, the controller and the device driver, have to keegktadaevice state. When an applica-
tion issues a request to a device, the device driver mustetisat the device is in the correct
state to process the request — or issue an errq@rofocol specifies how and when device func-
tions can be invoked, what their parameters are and whatdfinesponse can be expected at
which time. In this context, the word function is used in aykiberal sense. The invocation
of a device driver function can be as simple as reading ateggis involve sending a series of
well-formatted commands to the controller.

The device driver and the controller have to handle thesglgletDevice protocols are written
informally and can be found in the data-sheet of the devicthére is one available). In addi-
tion, device driver developers also have to pay attentioouo protocols. While USB defines
a message-oriented communication model, communicatitin avPCl device is achieved by
register 1/O operations. The corresponding standardselefessage types and register layouts
respectively. Therefore, device communication can beseithessage-based or register-based.
Also, since device drivers closely work together with thenlet and use kernel services, they
also have to obey protocols imposed by the operating system.

In theory, I/O operations can be implemented synchronodbwever, compared to processor
speed, I/O operations are very slow. In order to avoid wggihocessor resources, 1/O transfers
are usually carried out by a DMA (Direct Memory Access) coliér. Completion of an 1/O
operation is usually signaled via an interrupt. Similargtwork cards notify the driver when
new data has arrived. A device driver also has to deal withlhigying events which can occur
at any time. Therefore, device drivers execute icoacurrent environmenand are typically
realized as multithreaded programs.

In summary, following important observations on devicerelrs have been made:

e Device drivers implement hardware abstractions by hidimgrnal device details

e Device drivers implement device and operating system poigo

For simplicity, the term bus is used to denote the conceptdsta-path connected to a device, not the actual
topology.

e Device drivers execute in a concurrent environment

2.3 The Linux Device Driver Architecture

The Linux device driver architecture supports a huge waridtdevices and busses. Due to
the vastness of the architecture, it is impossible to addatb$mportant details and subsystems.
However, every device driver author should have knowledigeitthe three basic device classes:

e Character devices
e Block devices

o Network devices

Every character and block device is represented as a filersyestitry in the dev directory.
I/O on a block or character device is performed by accessiegcorresponding file and per-
forming standard file operations suchagsen, cl ose, r ead andw i t e. Character devices
arestream-orientedand carry out I/O transfers on a byte level. Examples of mlaysiharacter
devices are input devices, sound cards, serial and papalted. Well-known virtual character
devices are the random number generatatev/ r and and/ dev/ ur and.
Block devices aréblock-orientedand process data in fixed-size multiples of a byte, called a
block. In contrast to character devices, 1/O operations lonkbdevices are buffered for per-
formance reasons. The central data-structure of blockcdsvis the request queue which is
typically ordered by an I/O scheduler to satisfy perforneaacfairness criteria. Storage devices
like hard disk drives, USB drives, card readers are exangflédock devices. Useful virtual
block devices are RAM disks (most Linux distributions hdstrh undev dev/ranf 0. . N])
and virtual storage drives for mounting image files. Als@dr@and write requests are usually
processed and (possibly) reordered by an I/O schedulerdiogdo a
Unlike block and character devices, network, devices ddaweé an entry in thédev/ direc-
tory. Instead, they are represented as interfaces whichecaocessed with tools likd conf i g.
The fundamental data-structure of network devices is tleketdouffer 6t ruct sk_buf f)
which holds packets for transmission or reception. Theddask of a network driver is to hand
over socket buffers for transmission to the controller, incbnvert received packets into socket
buffers. Details about the network protocol are handledgpeu layers.
Apart from character, block and network devices, the Lintohaecture supports all kinds of
devices ranging from CPU voltage regulators to graphicdscam addition, the Linux kernel
provides APIs for accessing all common device busses (USRH,IPC) and supports commu-
nication protocols such as SCSI, SATA or Bluetooth. Als@réhare numerous subsystems
that provide low-level drivers which handle core aspectsi@fice classes and leave the de-
tails to high-level drivers. Examples are the input sulmystsound subsystem and USB device
class subsystems suchwsb2seri al orusb2et her net. The driver architecture is being
steadily improved and extended with more support for alilkiof devices.

10

User-Space Drivers versus Kernel-Space Drivers

In Linux, device drivers typically execute in kernel-spasepart of the kernel. Writing kernel-
space drivers can be considered as a challenge becausedtntyiny programming model is
rather complex, under constant change, and unforgivingds.bProgramming faults may easily
manifest as kernel crashes and debugging device driversecdifficult.

This essentially inspired the creation of the user-spa@dridmework (UIO) which targets em-
bedded devices used in control engineering and procesmatibm. The advantage of UIO is
that the programmer can (theoretically) implement a desideer with all available tools and
programming languages. However, UIO does not support gadoace critical devices such as
network interface controllers (NICs) or storage devicessoAbootstrapping code such as in-
stalling interrupt handlers still has to be implementedeénrel-space. Overall, the capabilities
of UIO are rather limited.

Apart from UIO, programmers may also use libraries suchidsUSB to gain direct access to
devices, but again, the kernel has to offer user-space itigstl to the kernel subsystem that
handles the corresponding device class. Thus, librarsesdal not offer a complete solution.
Because user-space support is very limited, the remainfdénisochapter focuses on writing
kernel-space drivers.

2.4 The Linux Device Driver Programming Model

Because device drivers are part of the kernel, programmears to be familiar with internal
mechanisms that are used throughout in the kernel. Commyraynchronization, memory
management and hardware I/O are the essential aspectsanidutes of every device driver.
This section gives an overview on how these aspects areedah the Linux kernel.

Kernel Modules and Driver Organization

Kernel-space device drivers are typically implementettexrsael modules Modules provide a
dynamic plug-in mechanism for kernel code and can be loautedkernel-space and unloaded
at any time. The module concept is particularly useful in boration with hotplugging, which
enables device driver code to be loaded and unloaded on deman

A module consists of three parts,

e an interface and data objects,
e an optional list of parameters, and

e meta-information.

The interface of a module can be divided into private andipufhctions. By default, a
module function is private and hidden from other moduleghéf programmer wishes to make
a function visible to other modules, the corresponding fiencprototype has to bexported
to the kernel symbol table with a special macro. Data objeats, global variables can be
exported analogously. Once exported to the kernel symbd# téghe function (or data object)

11

can be readily accessed by all other modules. This is usafarfjanizing subsystems layers of
modules. In Linux terminology, this is calledodule stackingModule stacking is also useful
for splitting device drivers into two parts: a high levelhd that handles generic aspects of a
particular device class, and a low level driver that corgtalavice specific code. For example,
the USB-to-serial module exploits this idea and offers aickgdd interface to various device
driver modules that handle different USB-to-RS232 comrerhipsets.

Module parameters allow the programmer to make a moduleqroafdle. For example, a RAM
disk driver may export a parameter for the capacity whichtmeet during loading by the user.
Every module contains a set of named attributes that desiriportant meta-information such
as author, description and code license. Programmers baugoply these information in the
corresponding source code by using macros.

Compilation and linking of modules is a simple process arsd jnvolves writing a special
Makefile which can be invoked with the well-knowmk e command.

Device Driver Entry Points

Every device driver implements at least one interface tefihds a set oéntry pointsat which
control to the device driver is transferred. For exampleckland character device drivers im-
plement I/O interfaces that are invoked whenever a useogasf I/O on the corresponding file
node.

At the implementation level, the device driver has to regifis interface implementation with
the corresponding subsystem during run-time. Listing Bds a simple example that demon-
strates interface implementation and registration foraxatter device.

In general, interfaces are overridden by passing bindiagfufction pointers to to the cor-
responding subsystem. This is a common idiom (or workarptordnterface specialization in
C code. Interrupt handlers also define entry points and ardléd in a similar way. The de-
vice driver simply registers the interrupt handler with keenel by calling the equest _irq
function and passing the address of the handler.

Concurrency

The entry points of a device driver are typically invoked camently in an arbitrary order. Mul-
tiple processes might perform 1/0 on the same device, theedself might raise an interrupt
which triggers the execution of an interrupt handler andh it advent of hotplugging, a device
can be disconnected at any time. In addition, since versi®nti2e kernel is now preemptive to
exploit symmetric multi-processing architectures whielvdnbecome standard in today’s desk-
top computers. This means that device driver code can benpted at any time, and may
execute on different processor cores at the same time. Thex ldernel does not protect the
device driver from concurrent device driver activity. Itup to the programmer to coordinate
activities and to synchronize shared data objects. To tids #he Linux driver APl equips the
device driver programmer with numerous facilities for atination and synchronization.

12

Listing 2.1: Implementation of driver entry points and devregistration.

[+ I nplenentation of read function */

static ssize_t

chrdev_read (struct file *=file, char __user * buffer, size_t buffer_size,
lof f_t+ offset);

static const struct file_operations chrdev_fops = {
.owmer = THIS MODULE, /* Used by the kernel for reference counting =/

[+ Driver entry points. */
.read = chrdev_read,
.write = chrdev_write,
.open = chrdev_open,

.rel ease = chrdev_rel ease,

I

/* Ready entry point =/

static ssize_t

chrdev_read (struct file *=file, char __user * buffer, size_t buffer_size,
| of f_t+ offset)

{
printk("chrdev: _read\n"); return O;
}
I+ ... Inplementation of read, open, and release */
| *

Modul e initialization function

Al | ocate major and nminor nunbers, and register as a character device
*/
static int __init init(void)

if (alloc_chrdev_region(&mmjor_nunber, 0, 1, DEV_NAME) < 0)

{
printk("Dynam c_al | ocati on_of _maj or nunber _failed: '%!'\n", nun;
return -1;

}

cdev_init(&cdev_cnos_devi ce, &chrdev_fops);
cdev_add(&dev_cnos_devi ce, mmjor_nunber, 1);

return O;

13

Execution Context

Every device driver function is associated withexecution contextfThe execution context de-
termines the types of operations that are permitted witliaréicular driver, or kernel, function.
There are three types of execution contexts:

1. process context
2. interrupt context

3. atomic context

When a user-space program issues a device operation thtbeglystem call interface, a
software interrupt transfers control to the kernel whicanthocates the device driver and calls
the corresponding driver function (for example thead function of a character device driver).
Because the request is being carried out on behalf of a gottes driver function executes in
process contextin process context, the calling process can be put intgsfahe operation
takes some time to finish. This happens on various occadmmisstance, when the driver calls
a blocking kernel function or when the device is busy perfagranother operation. Once the
device or driver is ready to process the 1/O request, thegsois woken again.

However, there are requests and events that are not agsbeidh a particular process. For
example, device interrupts occur independently from gpeace processes (even if there is a ca-
sual link) and are processed in interrupt handlers withdn#cking process. In interrupt context,
sleeping is forbidden because interrupt handlers are mbbpany process and cannot be put to
sleep and resumed. Calling a blocking function in an infgrhandler results in a deadlock.
Similarly, there are other code paths in a device driverdiatot permit sleeping. For example,
the 1/0-request-queue handler of a block driver is protketith a special kind of lock (see next
section) that does not allow blocking function calls. Arethxample is the packet transmission
entry point 6t art _xmi t) of a NIC driver which also executes in atomic context. Trstidc-
tion between interrupt and atomic context is important fating correct synchronization code,
and will be made clear in Chapter 4.

Synchronization

The Linux kernel offers various synchronization primitviat allow the programmer to protect
shared data and to coordinate concurrent driver activities

In general, shared resources can be either protected with o lock-free operations. Lock-free
operations are used in special circumstances, usuallytegirsmall data objects. For example,
simple objects that can be represented as numbers (sucfessnoe counters) or bit flags can
be implemented as atomic variables. The Linux kernel offieestypeat onmi c_t along with
operations that support concurrency-safe reading, \graimd testing of single values. Atomic
operations are mapped to CPU instructions that guarande@@behavior.

Operations such as processing the elements of a request guemore complex and may re-
quire locking. In general, the kernel offers blockirgehaphorésand non-blocking locking
(spinlock3 primitives. The choice depends on the execution conteiftdata is only shared

14

between functions with process context, then semaphoestharbest choice. However, if the
data object is also accessed within an interrupt handlerithinmatomic context, then the pro-
grammer has to resort to non-blocking lockginlocksrealize non-blocking behavior with busy
waiting. This puts an important constraint on code that &tqmted with a spinlock: it has to
finish quickly and it should not block. In the best case, nglk blocking operation with a spin-
lock leads so substantial system performance degradatiahin the worst case to a deadlock.
Another important factor that has to be considered is thispaance of a locking scheme. Due
to the privileged role of device driver code, a single dewddeer might significantly slow down
the operating system with wasteful locking. The kerneldfezg different variants of semaphores
and spinlocks that are optimized for reading or writing. Bming lock contention and read-to-
write ratio of shared data-objects is thus important in cheteéing an optimal locking strategy.

In essence, implementing a correct locking scheme can lyetrigky. Optimizations are even
more difficult and dangerous but crucial for performanaesg®e device drivers. In fact, stud-
ies on operating system errors show that concurrencyectlatigs such as deadlocks are very
common in device driver code [Chou et al., 2001, Ryzhyk et24l09a]. More details about
locking are discussed in Chapter 4.

A device driver also has tooordinateconcurrent activities. To this end, the kernel offecsn-
pletionsandwait queues Completions provide a mechanism to wait for the completiban
event, e.g., an I/O operation. While this can be also acHiewth semaphores, there were many
cases of race conditioAswhich motivated the introduction of the safer completioecmanism.
Internally, completions are implemented with wait quewelsich are more powerful and allow
multiple processes to synchronize on events on a queue.

Interrupt Handling and Deferred Work

While an interrupt handler is executing, no other procedseanel code path can be active on
the local CPU at the same time. Thus, an interrupt handlarglpass control back to the kernel
as fast as possible anigéfer CPU-intensive work to a later point in time.

Conceptually, an interrupt handler candigidedinto two parts: top- and bottom-half. The code
in the top-half constitutes the performance critical pad ahould terminate as soon as possible.
The bottom-half is scheduled at a later point in time, aferinterrupt handler terminates and
includes code that may block or cause unacceptably highdete For example, the top-half of
a NIC interrupt handler clears the interrupt status flagsdehace, determines how the interrupt
should be handled and defers the corresponding operatich & processing received packets)
to a later point in time. The Linux kernel provides three natdbms to defer worktasklets
work queuesindtimers

Tasklets are essentially functions that are called in ataontext within a separate execution
trace. They have higher priority than any other process aodld terminate swiftly in order
to avoid high latencies. In contrast, work queues do not Mlaigeconstraint because they are

2 Bovet and Cesati [Bovet and Cesati, 2005] give an exampletwhill be paraphrased as follows: Suppose
there are two concurrent code pathé énd B) in a device driver. A has to wait forB. A creates a temporary
semaphores, passes its address i and waits by callinglown on S. B signals completion witlup. A can now
resume execution and delete the temporary semaphore. ldgveeva multiprocessor system,and B might call
down andup at the same time, withl deleting the semaphore whil is still executing theaip function.

15

associated with a pseudo process and therefore executedesgrcontext. All operations are
permitted within a work queue function, which makes thens lestrictive than tasklets. Work

gueue functions are scheduled by a worker thread which ismwach CPU. The next function

on the queue can be only processed once the previous fur@®finished execution. This is

the drawback of work queues: a blocking function stalls thi&re queue.

A common use for timers is to terminate a pending operatitimeitievice does not respond after
a specified time interval. There are two important constsaim timers. First, the execution

of a timer function might be delayed significantly if the ®mstis under heavy load. Therefore,
timers should not be used for real-time sensitive code. I8kdoner functions execute in atomic

context and must not block.

The Memory Model and Memory Management

Compared to user-space applications, the memory modelayskeginel modules is rather com-
plicated and requires careful programming. Device driy@grammers have to distinguish
between differenmemory zoneandaddress typesin addition, the kernel offers various mem-
ory management functions the programmer can choose from.

Memory Zones and Address Types

The Linux kernel divides memory into three zones:

e DMA-capable memory,
e normal memory and,

e high memory.

The DMA memory zone constitutes of memory that resides withé first 16 MB of main
memory. DMA buffers for devices that support only 24 bit aing (such as legacy devices
that use the ISA bus or even poorly designed PCI devices) todwe allocated from this zone.

In most cases, all other memory is allocated from the normiaé zJonathan Corbet and Kroah-
Hartman, 2005]. DMA-capable memory and normal memory émnstiow memorywhere
kernel code and data structures reside. Low memagesare always mapped to main memory
and be freely accessed by kernel code (or within a kernel fepdin contrast, high memory
addresses are not directly accessible by kernel code areltbamapped explicitly into the
kernel page table. Usually, a device driver has to deal wgh memory when transferring data
from user-space into kernel-space. Listing 2.2 illustatés with a simple example: The read
function of a character device has to fill a buffer providedthy user-space application with
data; since user-space addresses might refer to high merdrgsses, a special function has to
be used to make the buffer accessible.

The exact layout of the memory zones is architecture depender example, on 64-bit
x86 systems, there is no distinction between high and low angmHowever, a portable de-
vice driver should not make any assumptions on the underiginhitecture and always use safe
functions to handle different memory addresses.

16

Listing 2.2: Transferring memory between kernel and usacsp

static ssize_t

chrdev_read (struct file *xfile, char __user » user_buffer, size_t buffer_size
, loff_tx offset)

{

char* device_data; int bytes_read;
/* Read device data ... */

[+ ... copy data to user space. x/

[+ DON T use nencpy ...=*/
[+ mencpy(user_buffer, device_data, bytes read); =*/

[+ ... use copy_to_user =*/
copy_to_user(user_buffer, device_data, bytes_read);

return byte_xferred,

Unlike user-space applications, which only know one typenefmory address, the kernel dis-
tinguishes between four address types:

physical addresses,

bus addresses,

kernel logical addresses,

kernel virtual addresses, and

user-space virtual addresses.

Physical addresses identify locations in main memory apdla result of MMU transla-
tions. Bus addresses are used by devices and in DMA opesatidm some architectures, there
is no distinction between bus addresses and physical agdreslowever, architectures that are
equipped with I/O memory management units (IOMMU) have asme address space for de-
vice /0.

Kernel logical addresses refer to a linear, physically igotus address space (low memory)
and can be translated into physical addresses by lefirgshPAGE_SHI FT bits. The result of
mapping a page from high memory into kernel space is a keirteb/address. No assumption
on the layout of kernel virtual address should be made.

Finally, user-space virtual addresses are regular menduseases used within user-space ap-
plications.

17

Memory Management

Efficient memory management is an important aspect of dalriger code. Unlike user-space
applications, kernel code does not use the standard C allsgaal | oc andf r ee to man-
age memory. Instead, the kernel provides three basic meatlogator functionskmal | oc,
__get _free_pagesandvnal | oc.

The most widely used allocator kgral | oc. It can be used to allocate memory from the nor-
mal, DMA or high memory zone. Typical uses fomal | oc are dynamic allocation of data
structures such as ring buffers or DMA buffers. One impadrthiference toral | oc is that the
programmer has to pass one additional argument, an abboctiig, tokmal | oc which deter-
mines where memory is allocated from and whether the operatiallowed to block. The most
common used flags are GFP_ATOMIC and GFP_KERNEL which badticate memory from
the normal zone, but the former flag forbids blocking.

The allocator__get _free_pages is used to allocate larger memory areas, i.e., multiples of
pages (typically 4 KB). There are only a few drivers that mage of page allocation. Common
uses are buffer allocation for downloading device firmwareegeiving large amounts of data.
Depending on the amount of main memory availaklerl | oc can allocate up to a few giga-
bytes of memory. The use @fhal | oc is also rare. For example, virtual device drivers such
as RAM disks make use ofmmal | oc. In addition, the kernel also offers optimized allocator
functions for frequent allocation (and deallocation) ofairmemory regions.

Hardware 1/0O

Communication with a device is either achieved by perfogri® on registers or by sending
messages to device endpoints. The method of communicatenndined by the underlying bus.
For example, the PCI bus maps device registers into (maimanefor direct access, while USB
defines a message-oriented communication model with HestUEB controller) and client (the
device).

There are two methods for accessing device regisfra-mappedand memory-mappedfO.
Ports are special memory regions that are accessed witbhatediCPU 1/O instructions. In
contrast, memory-mapped I/O locations are accessed wdtlsdame instructions as all other
memory locations. The difference is important because A& @nd compiler might reorder
memory instructions which may affect the correctness oftéagce 1/0 code. The solution to
this problems arenemory barrierawvhich prevent reordering. Port-mapped 1/0O access does not
come with these problems.

For port-mapped I/O the Linux kernel provides the functions

out b(u8 val ue, unsigned | ong port_nunber); u8 inb(unsigned | ong port_nunber);
out W ul6 val ue, unsigned | ong port_nunber); ulé i nw(unsi gned | ong port_nunber);
outl (u32 val ue, unsigned | ong port_nunber); u32 inl (unsigned | ong port_nunber);

to read and write values from I/O ports at the specified paltegbes. Before access, port ad-
dresses have to be claimed and released with&tpiest _r egi onandr el ease_r egi on
functions, respectively. User-space applications cangdf access to I/O ports viathdev/ port s

18

file node.
I/0 to memory-mapped regions is best performed with thefdglg functions

iowite8(u8 value, void __ionem addr); u8 ioread8(void __ionem addr);
iowitel6(ul6 value, void __ionem addr); ulé ioreadl6(void __ionmem addr);
iowite32(u32 value, void __ionenm addr); u32 ioread32(void __ionem addr);

Linux also exports thédev/ i omemfile for memory-mapped I/O access within user-space.
There is no uniform interface for message-oriented comaoatioin, since the semantics are bus-
dependent. For example, the USB layer supports both, synobs and asynchronous message
communication. Programmers who are used to programmimegtiderver systems will find
themselves familiar with message-oriented device I/O catfbile the details differ, the con-
cepts are essentially the same.

2.5 Further Reading

This chapter only covered the bare basics of Linux deviceedprogramming. More informa-
tion about the programming model can be found in the thirti@dof “Linux Device Drivers”
book by Corbet, Rubini and Kroah-Hartman[Jonathan Corbdtkroah-Hartman, 2005]. It is
considered a classic in the kernel community. A hands-omoagh to device drivers can be
found in Venkateswaran’s “Essential Linux Device Drivevdiich covers a broad range of de-
vice classes with motivating real-world examples [Venkai@ran, 2008]. Cooperstein’s “Writ-
ing Linux Device Drivers” is the most up-to-date book on @evdrivers and is a helpful yet
incomplete reference [Cooperstein, 2010].

Since the kernel is under active development and driverfates are constantly changing and
improving, the most up-to-date information can be foundreweb. LWN.net provides weekly
news about selected topics in kernel development [Ekle@D40]. The Linux Mailing List
[Spaans, 2010] is the hotspot for most recent discussioupogoiming changes.

Last but not least, the Linux source code can be also a grkst whinformation even though
it might be difficult to know where to look for information. ELinux Cross Referencer (LXR)
makes navigation easier and enables the user to searcleftifigks and text segments the Linux
kernel easier [Redpill Linpro AS, 2010].

19

CHAPTER

The Device Driver Reliability Problem

According to recent and past investigations on device drigkability, two main sources of
device driver defects can be identified [Ryzhyk et al., 2068&hyk et al., 2009b, Renzelmann
and Swift, 2009, Mérillon et al., 2009, Conway and Edward¥)4]. On the one hand, there
is lack of formalization of OS and device protocols which determine the correctneesesy
device driver. The notion of protocols was already intratlug Chapter 2 and will be refined
in the following sections. On the other hand, current dedigeer programming modelkick
support for important aspects, notably concurrency and hardwére 1/

3.1 Device Protocol Violations

Every device driver is based on a protocol which describesofferations of its device. The
device protocol is typically derived from an informal sgagition provided by the device man-
ufacturer. Every nontrivial device protocol defines

e an interface,
e a state machine,
e events and

e data structures.

The interface is essentially a feature description of aaeadnd comprises all operations
(or functiong that the device supports. For example, every NIC protaedlides functions for
transmitting and receiving packets.

How the interface functions are invoked is determined by themanication model of the un-
derlying bus. In general, a function is either invoked byf@ening I/O on device registers or
by sending and receiving messages to specific device ertdpoin

21

The state machine captures the internal state of the dewszelfy only the part which is rele-
vant to the device driver programmer) and possible statsitians. It putorderingandtiming
constraintson the usage of interface functions and defines data forroaexthange. For ex-
ample, the packet transmission function of a NIC may be amntgked once the transceiver has
been put into the correct state. Usually, devices also gamewents that are triggered on various
conditions, for instance, on the completion of an operatiothe arrival of new data. The state
machine also specifies when device events are triggerededindred.

Finally, more sophisticated device protocol also uses-statectures which are shared between
the device and device driver. For example, /0O devices wigh lthroughput rates use data
structures such as ring buffers and queues to manage anesprtd© requests. Other device
protocols, such as the USB human interface device class, regeiire the implementation of
parsers to marshal and unmarshall data.

A key observation is that the same device protocol usuakynhany instances and can be found
in:

1. the device controller (as part of the firmware or an RTL gjmation)
2. the corresponding device specification, and

3. device driver code.

The most accurate and complete description of the fundtioglaavior of a device can be
found at the register-transfer level (RTL). Hardware modglanguages like VHDL or Verilog
are used to describe the RTL of a device controller. AlthotinghRTL specification is not im-
portant to the device driver programmer, he or she shoulé e same understanding of the
underlying device protocol.

In general, the driver programmer obtains the device pobterom the device specification.
Usually, the device specification is created by a technigabnwwho does not have a complete
understanding of the device but has experience in the fielwhgineering and, ideally, writing
talent. In essence, the specification isadostractionof the RTL written in a natural language
(typically English). Due to the nature of the writing and tastion process, there are inher-
ent problems wittcorrectnessand completenesfRyzhyk et al., 2009a, Ryzhyk et al., 2009b].
Apparently minor mistakes can have large effects and leduli¢my device driver code. For
example, the specification of Realtek’s RTL8139C netwot&rfiace controller states that read-
ing the interrupt status register clears all interruptsdlid, 2002]. However, this is incorrect
because the status register has to be written instead. aynithe revision history of Intel's
specification of the 8254X gigabit Ethernet chipset showsrsd additions and corrections to
the original document [Intel, Corp., 2009]. Interestinglyen devices that are developed ac-
cording to standardized interfaces often fail to meet mwitgpecifications. For example, there
are many controllers that do not exactly adhere to the tmelatd USB mass storage class spec-
ification. [Axelson, 2010, Dharm, 2010]. In consequencepraplete device driver has to deal
with all these deviations to support a wide range of deviedsch adds unnecessary complica-
tions.

The situation is complicated by the fact nowadays, evencdeuvihat offer simple functionality,

22

such as mice, have shown a drastic increase in complexitwePmanagement has become
an increasingly important concern, adding even more caxitpléo an initially simple device.
With the advent of hotplugging, devices can be plugged ampdugged at any time, requiring
additional synchronization between concurrent deviceedrctivities.

It comes at no surprise that device protocol violations are af the major sources of device
driver bugs. In a device driver study, Ryzhyk et al. analytexpatch history of a selection of
Linux device drivers. They found that device protocol vimas account for 38% of all found
defects [Ryzhyk et al., 2009a]. In conclusion, improving theation process of device specifi-
cations and their protocols is imperative to increase thegalireliability of device drivers.

3.2 Operating System Protocol Violations

An operating system protocol describes how the operatibaglevice are mapped to the under-
lying driver model. Every device driver has to translateraping system requests into device
specific commands. The underlying OS protocol determineshmtequests the driver has to
handle and in what order they may appear. In addition, theatipg system protocol may also
include generic services that are needed to implement aaldviver, for example hardware 1/0
or memory management.

The Linux operating system protocol consists of four parts:

1. core services (e.g., hardware I/O, memory management),
2. acollection of driver subsystems (e.g., networking, Y8Rt export interfaces,

3. their corresponding data-structures (for example, etobuffers or 1/0 request queues),
and

4. constraints on each interface, service and data-stauctu

Data-structures, interfaces and services are implemest&ifunctions that can be invoked
within the kernel environment on behalf of the device dri&ince the C programming language
does not suppordesign by contragtconstraints that go beyond simple type checks have to be
described informally. As is the case with informal devicetpcols, there are inherent problems
with correctness and completeness.

In their device driver study, Ryzhyk et al. have shown thatgd&ocol violations constitute
20% of all found device driver defects [Ryzhyk et al., 2009&jey found that the most frequent
faults are incorrect use of OS data structures, passingreatarguments to OS services and in-
correct configuration of driver subsystems. Apart from tifeerent complexity of multithreaded
driver subsystems and their programming, Ryzhyk et al. fiatl the reason is that communica-
tion between the OS and drivers is poorly defined. Indeedimibg accurate information about
the driver APl interfaces can be difficult.

The Linux kernel comprises a huge collection of subsystems?dP| functions that require a lot
of documentation effort which is not always properly undken. In fact, the main problem with
the kernel documentation is that it is highly fragmentedpimplete and inconsistent. In 2007,

23

the Linux Foundation awarded Landley with a fellowship tgmowve the Linux documentation

[Landley, 2008]. Landley realized that although there isigehamount of available documen-
tation, it is poorly structured and organized. He found that main problem is that there is
no complete, comprehensive and up-to-date documentdtaircan be obtained from a single
location. In fact, pieces of partially redundant documgataare scattered over many different
locations, and can be found in the

e kernel-source tree,

e linux-kernel mailing list (archives),

Linux Weekly News pagd (M. net)

Ottawa Linux Symposium proceedings, and in

books and numerous other online resources.

One of the most apparent places to start looking for up-te-dacumentation is the kernel
source tree. However, even the kernel-source tree doeggemine the contained documenta-
tion very well and contains three complementary source®ofichentation: the Documentation
directory, kerneldoc entries found in kernel source filed mmmerous help entries of the kernel
configuration tookconf i g. Due to bad organization, neither of them prove to be a gooctso
to get started. For example, the documentation directomyagms an overwhelming number of
poorly indexed plain-text files on a wide range of topics. Tdgelevel directory is completely
incoherent, containing text files about using spinlocks, Amiga Zorro Bus, memory barri-
ers, and so on. More specific topics are categorized and deffinesubfolders. Some of these
subfolders contain a central index file, others not. It isydasget lost in the Documentation
directory.

The most up-to-date information can be found in the linuxaké mailing list. However, Land-

ley notes: 'These days, most kernel developers considengbssible for anyone to read all
messages on linux-kernel, certainly not on a regular hasigleed, the linux-kernel mailing

list archive shows that over 157,000 messages were pos@@Di [Spaans, 2010]. Although
the well-known Linux Weekly News (LWN) page provides infative articles on important

discussions in the kernel community, only a small fractibalbinformation is being covered.

Attempts to provide weekly, in-depth overviews of impottdiscussions have eventually failed
[Landley, 2008].

The proceedings of the Ottawa Linux Symposium provide @#iéng insight into latest kernel

research and the inner workings of various kernel subsystéuot the aspiring device driver
programmer (or kernel hacker) has to know which topics t& foo.

The arguably best source to get basic information aboutdaliiver programming and the in-
volved protocols, is by reading one of the few availabletierks. However, many of them
are already outdated and do not cover all important detéilseodriver API. For example, the
definitive guide to device driver development 'Linux Devibeivers’ by Corbet, Rubini and

Kroah-Hartman [Jonathan Corbet and Kroah-Hartman, 200&jigees useful information on

Linux driver programming but it is outdated and incompléi¢hile many sections of the driver

24

API are covered, many important subsystems are left unedver

Because kernel development moves at a very fast pace, amhpkiofocumentation, be it books
or easily updatable online resources, will inevitable faaeblems with incompleteness and ac-
tuality. While this can be considered a problem for any atyideveloped open source API, the
Linux driver subsystems haven undergone many fundamehgéalges. Many of these changes
affect the majority of the device driver code base.For eXampe USB subsystem has been
reworkedthreetimes to yield higher performance, requiring changes tafédicted drivers. Ac-
cording to key developer Kroah-Hartman, there will be ndistaAPI for device drivers. He
argues that a stable API would make it impossible to imprarad interfaces, and hence, also
device drivers. In conclusion, this makes the documentation task even ofa@kenging.

3.3 Programming Model Weaknesses

Chapter 2 provided a short overview of the Linux device drpgramming model and granted
an impression of the involved complexity. In essence, towl Eanguage support for device
drivers is limited, while the requirements on driver pragraers are high. The current driver
programming model lacks support for two key aspects thapareof every device driver: con-
currency and hardware 1/O. In addition, there is no suppmrttfe separation of device and OS
protocol management code which leads to readability andtaiaability problems.

Concurrency and Synchronization Faults

Concurrency faults are very common in device driver codetdtiee complicated multi-threaded
execution model of the kernel. Typically, a device drivemguises a series of entry points
which are invoked simultaneously. Nowadays, almost all enedusses support hotplugging.
This means that devices can be remoaedny time requiring additional synchronization and
coordination effort between parallel driver activitiehidmakes device driver code very hard to
read and comprehend. Another factor that leads to comjgiitais that driver functions execute
in different execution contexts.
Ryzhyk et al. conducted a detailed defect analysis basetlicaen hand selected drivers for
the USB, Firewire and PCI busses [Ryzhyk et al., 2009a]. Riyzh al. found that concurrency
bugs account for 19% of all device drivers faults. Table Bdwss detailed results of their study.
As shown in Table 3.1, deadlocks comprise a significantifracif concurrency faults. The
cause for most deadlocks is surprisingly simple: “calling@cking function in an atomic con-
text”. There are a number of possible explanations for tls. the one hand, inexperienced
programmers might not be always aware whether a functioibiégxtblocking behavior or if
it is safe to call a blocking function. On the other hand cagfactorings, changing either the
behavior of a driver API function or the execution contexadfinction in the driver itself, might
cause this kind of bug. Padieoleau et al. present a case atutlhys bug, in which a parameter
(an allocator flag) was added to the USB messaging funetidm submi t _ur b [Padioleau
et al., 2006]. The correct choice of the parameter was degrerah the surrounding execution

!Kroah-Hartman’s statement can be found in the documentdtililer of the kernel tree. Interested readers
might take a look at the filet abl e_api _nonsense. t xt

25

Table 3.1: Types of concurrency faults in device driverofadd from [Ryzhyk et al., 2009a]).

Type of faults Occurrences
Race or deadlock in configuration functions 29

Race or deadlock in hot-unplug handler 26

Calling a blocking function in an atomic context 21

Race or deadlock in the data path 7

Race or deadlock in power management functipris
Using uninitialized synchronisation primitive 2
Imbalanced locks 2
Calling an OS service without an appropriate lock

context, and many wrong adoptions were made, leading tolatged Interestingly, in some
cases, programmers passed the wrong flag, even if the cafitentd have been immediately
obvious. Since the C programming model does not distingugttveen different execution con-
texts, the compiler cannot prevent such faults, even ththughare trivial to detect, as this thesis
will show.

Implementation of synchronization strategies is yet agotthallenge device driver program-
mers have to face. One aspect that is particularly difficultrtplement is correct locking. In
general, the correctness of a locking scheme depends otethigfication of all critical sections,
the placement of locks, and the order in which they are takehinux device driver program-
ming, correct locking also depends on the choice of locksyjen with the correct placement
of locks, a deadlock can occur when selecting the wrong lppk.t When choosing a suitable
lock type, three basic rules have to be followed:

1. Never call a blocking function in atomic or interrupt cexit
2. Never call a blocking function while holding a spinlock.

3. Whenever a spinlock is used within an interrupt handtgeriupts have to be disabled
when taking the spinlock outside of the handler.

The first rule implies that semaphores cannot be used irrimtenandlers or in atomic con-
text, since the lock acquisition function might block. Irchucases, spinlocks have to be used
instead. In particular, this means that if a shared resdsr@ecessed within process context and
interrupt or atomic context, then a spinlock has to be usgatdoness context as well. Although
sleeping is permitted in process context, doing so whilelihgl a spinlockmaylead to a dead-
lock. This might not be always immediately obvious, sincdecgefactorings or a deep function
call hierarchies might hide spinlocks. The last rule is Buahd deserves further explanation.
When using spinlocks, there are some rather subtle problleatsnay occur in combination
with interrupts. Listing 3.1 shows a common code patterndwiack drivers that uses spin-
locks to protect shared data. In the sample code, there areemivy points: the interrupt
handleri r g_handl er andr ead which accepts read requests from user-space processes.
Both entry points perform operations on the shared resalegé ce_dat a which is protected

26

from concurrent access with the spinlockck. The locking code in the ead function

Listing 3.1: Spinlocks and interrupts.

spi nl ock_t 1 ock;

static irqreturn_t irq_handler(...)

{
spi n_| ock(& ock);
[+ Mani pul ate device/driver data =*/
sone_oper ati on(devi ce_dat a) ;
spi n_unl ock(& ock) ;
return | RQ HANDLED,
}
static ssize_t read (...)
{
spin_l ock_i rqsave(& ock, irqg_flags);
[+ Mani pul ate device/driver data =*/
anot her _oper ati on(devi ce_dat a) ;
spi n_unl ock_irqgrestore(& ock, irq_flags);
}

is of particular importance in this example. The functiotiscapi n_| ock_i rgsave and
spi n_unl ock_irqgrestore to acquire and release the spinlock, respectively. Whige th
lock is taken, interrupts on the local CPU are disabled. €tusial detail ensures correctness of
the locking scheme. If theead function used the same locking code as the interrupt handler
leaving interrupts enabled, then there is the possibilita deadlock. If the interrupt occurs
while the lock is taken in the ead function, then the CPU will spin forever in the interrupt
handler because no other activity can occur at that time.nCBMP architecture, the situation is
even worse, because the code will work if the interrupt isdhethon a different CPU but cause
a deadlock otherwise.

Another problem that occurs in concurrent device driverectststack ripping a term coined
by Adya et al. [Adya et al., 2002]. Stack ripping is commontimaditional) event-driven pro-
gramming models in which computations are divided into ssh&vent handlers. For example,
an asynchronous /0O operation is typically split into a fiime which issues the request and
immediately resumes execution, and a completion handighi$ scheme, the programmer has
to write glue code to establish a link between the functiothiscompletion handler. If the I/O
request operates on data of the function stack, then themtsndf the stack have to be restored
in the completion handler as well. The resulting code is Vemd to read and maintain.

Listing 3.2 shows an excerpt from the low-performance mesage driverdrivers/block/ub.c,
which illustrates this problem. The purpose of the code i@lmending on the type of the

27

Listing 3.2: Stack ripping in the ub.c driver

static void ub_data_start(struct ub_dev* sc, struct ub_scsi_cnd* cnd)

{
[+ ... =l

usb_fill_bul k_urb(&sc->work_urb, sc->dev, pipe, sg virt(sg),
sg->l ength, ub_urb_complete, sc);

if ((rc = usb_submit_urb(&ec->wrk_urb, GFP_ATOM C)) != 0) {
[x. .. */
return;

}

if (cnmd->tineo)
sc->work_timer.expires = jiffies + cnd->tineo;
el se
sc->work_timer.expires = jiffies + UB_DATA TI MEOUT

add_ti mer (&sc->work_tiner);
cnd- >state = UB_CVDST_DATA;

}

static void ub_urb_conpl ete(struct urb *urb)

{

struct ub_dev *sc = urb->context;

ub_conpl et e(&sc- >wor k_done) ;
t askl et _schedul e(&sc->tasklet); /+ Finish request, code not shown here */

}

static void ub_urb_tineout(unsigned | ong arg)
{
struct ub_dev *sc = (struct ub_dev *) arg;
unsi gned | ong fl ags;

spi n_l ock_irqgsave(sc->l ock, flags);
if (lub_is_conpleted(&sc->work_done))
usb_unl i nk_urb(&sc->wor k_urb);
spi n_unl ock_irqgrestore(sc->l ock, flags);

request) transmit data to or receive data from an USB massggt@levice. The data transaction
phase is initiated in the functiomb_dat a_st art. Line 8 callsusb_subm t _ur b which
issues an asynchronous USB request to the device endpoin@.cdrresponding completion
handlerub_ur b_conpl et e is registered at lines 5-6. While the message is being seheto
device, execution in the function resumes. In lines 13Hi8function creates a dynamic timer to

28

handle the event of a data transmission timeout. Upon cdroplef the USB request, execution
continues irub_urb_conpl eteorinub_urb_ti neout in the case of a timeout.

The important thing to note here is that the data transfdc lsgscattered over three functions
(to be precise, even four, if we count the invocation of theklit at line 29). Note that the
variable “sc” which holds information about the command afsb contains a reference to the
timeout handler, has to be taken from the stack and manusdligated in the timeout function
and the completion handler. The resulting code suffers fieadability problems due to implicit
control-flow and data dependencies between different imet The same problem also occurs
in interrupt handlers which are divided into bottom and tajvés.

No Separation of Concerns

The implemention of a device driver can be divided into twaesss. The first aspect implements
the device protocol and communicates with the device, whidgesecond aspect interacts with
the operating system according to the rules defined in therd®qol. While the two aspects
are disjoint, Linux device drivers typically mix them. This has negatiwgact onreusability,
readability, maintainability andportability.

A past study on Linux device driver code has shown that ovgye20ent of Linux device driver
code originates from copy&paste operations [Li et al., 200¥ccording to the study, device
drivers contain about 500,000 of copy&pasted code accogirftr 12% of the Linux kernel
2.6.6 source code. Considering the rapid growth of the Lkemel, it can be expected that the
proportion of copy&paste code also increased significantly

Because the programming model does not support the reus8-gsp€xific code, the only op-
tions are to rewrite a device driver from scratch or to adiogt, copy&paste, existing driver code.
In both cases, the resulting device driver code containgrafigiant fraction of OS-dependent
code that has to be maintained seperately along with alt digndce drivers. Thus, the resulting
device driver code is more difficult to read. But there is ABgtmore severe problem: if the OS
protocol changes, then all affected drivers have to be (alBnunodified. In 2006, Padiolaeau
et al. observed that the number of referenced driver libfangtions per device driver of the
Linux kernel version 2.6.13 has doubled since version 2adliiteau et al., 2006]. This means
that device drivers contain more and more OS-specific codeassmore likely to be affected
by (partial) OS protocol changes. Thus, even minor changekiter interfaces are likely to
affect a large number of drivers. Padiolaeau et al. calldffectcollateral evolution[Padioleau
et al., 2006].

Until recently, either scripts that search for code pati€dbased on regular expressions) or man-
ual code editing techniques were used to make necessaryicatidns to the driver code base.
However, with conventionally employed scripting techrdgusome interface changes cannot
be easily automated and require (manual) data and contkelghalysis. Also, collateral evo-
lutions usually also introduce new bugs and slow down dril@relopment [Padioleau et al.,
2006]. It has to be mentioned however, that the recentlyldped semantic patch&occinelle
(see Chapter 6, “Related Work”) already shows promise teestiiis problem. Coccinelle has
been successfully used to create a variety of kernel patbaesdeal with complex changes.

2Ryzhyk et al. demonstrated this with their device driveragator Termite [Ryzhyk et al., 2009b].

29

While the negative impact on maintainability can be mitghtvith advanced tools like Coc-
cinelle, there is a another problem concerning collabonatin essence, the programming model
does not suppordivision of knowledge and laborCurrently, device driver programmers are
required to have in-depth knowledge of devimed OS protocols. Since the OS protocol is
changing very frequently, device driver programmers havillow discussions in the Linux
community regularly. If there was a clean separation betv@8® and device protocols, then de-
vice experts could focus and specialize on implementingcdgwotocols, while kernel experts
could focus on implementing OS protocols. A cleaner sejmaraif concerns has the poten-
tial to reduce costs and save time for hardware manufastared increase the readability and
maintainability of device driver code. Also, the portatyilof device driver code can be vastly
improved since the same device specification can be usedffiaredt operating system archi-
tectures. The usefulness of this approach has been deatedshy Ryzhyk et al., who realize
that separation of concerns is key for improvements in thécdedriver development process
[Ryzhyk et al., 2009b]. With their prototyped device drivggnerator, they have shown that
OS protocol implementations for Linux and FreeBSD can berahitanged without affecting the
device protocol implementation.

No Support for Hardware 1/0

According to Mérillon et al., code that communicates witihdweare is known to be particularly

error-prone. On the one hand, this is due to the addressédeprs with device protocols (see
Section 3.1), on the other hand this is because of the loel-leature of hardware 1/0O code.

Hardware designers usually encode different informatido & single register to efficiently use
space and reduce the amount of I/O operations. Thus, indil/idalues have to be extracted
with (error-prone) bit operations such as bitmasking ditshAnother problem is the possibility

of race conditions memory-mapped I/O operations due tauagon reordering by the com-

piler or the CPU. Mérillon et al. found that bit operationsiaapresent up to 30% of device
driver code [Mérillon et al., 2009]. They do not, howeveipyde statistics on the error-rate in
bit operations. Experienced device driver programmerbadsty write more robust 1/0O code.

Nonetheless, what Mérillon et al. do show is that high-lde@iguage support can help the
compiler to perform more accurate type checks [Mérillonle2®09].

Poor Support for Debugging and Testing

Debugging device drivers can be a very difficult issue. Whilsuggy user-space applications
can be restarted after a crash, device driver bugs oftertt ieskernel crashes. As a result,
the computer (or virtual machine) has to be restarted, wbashbe very tedious and frustrat-
ing. Kernel debuggers such as kdb can help detecting the adube bug, and in many cases,
the kernel prints out useful information when it encountmserror condition. However, once
the system is in an illegal state, there is no way around antestrrors like memory corrup-
tion easily affect logically unrelated subsystems or coaldsp This is an inherent limitation of
kernel-space drivers. Therefore, it is wise to program mEfely and carefully. However, the
brittle kernel environment makes experimentation withammfiar subsystems very difficult and
in particular newcomers will have frustrating experieneesntually. A successful technigue for

30

locating bugs is code-halving which involves removing agitiserting parts of the driver code
until the bug has been found. The drawback of this methodvgably the time that has to be
spent to find the bug.

Testing of device driver code is also a difficult issue beeaafshe multithreaded programming
model and the fragile kernel environment. In any moderateiyplex device driver, there are
many interleaving code paths that might lead to race camditand which have to be covered.
Most importantly, to the best of the author’s knowledgerdhare no official tools and method-
ologies for testing Linux device driver code.

No Tolerance for Hardware Failures

In a recent study, Kadav et al. found that many drivers do alidate device data and as a result
might crash if the device does not operate correctly [Kadazl.e 2009]. For example, they
found that the following code fragment of the 3c59x.c NICvdriwill be stuck in an infinite
loop, if the device malfunctions:

while (ioreadl6(ioaddr + Wh7_MasterStatus)) & 0x8000) ;

At the time of writing, almost one-and-a-half years havespdsand the most recent kernel
version (2.6.37) still contains this line of code. Kadav ketaso discovered that drivers use
unchecked device data as indices for static and dynamigsarfdso, while some device drivers
do validate the state of a device, they halt the kernel preralgton failure instead of performing
device recovery. For example, there are three cases in thé8RI9C+ driver where the kernel
is halted if a data-structure is in an unexpected state diegyal request is passed to the driver.
Semantic patches are a possible solution to this problengoritrast, in microkernel architec-
tures, device drivers can be simply restarted, thus, no aodemodations are necessary [Herder
et al., 2009].

3.4 Towards Solving the Reliability Problem
In summary, three main causes for the device driver reitglifoblem can be identified:

e increasing OS and device protocol complexity,
¢ no formalization of OS and device protocols, and,

e high complexity of the underlying programming model.

Due to the increasing complexity of OS and device protodolsnalization has become a
requirement to effectively prevent protocol violationdiellack of formal methods is a problem
which affects the reliability of device drivers belongirmany operating system. With respect
to Linux, it has been demonstrated that the programming hisdery complex and does not
provide support for crucial aspects of device driver prograng. The absent support for syn-
chronization adds additional complications to the cordral dataflow in device driver code. An
equally important problem is that there is no separatiowéen device protocol and OS proto-
col implementation. Therefore, device driver progammengetto knowledgeable in the area of

31

kernel development and have to be familiar with the interrmdldevices as well. Considering
the rapid pace at which kernel development moves, keepirtg dpte with the latest changes is
not as easy as it sounds.

Solving the reliability problem is a complex issue. In esgerthe way device drivers are written
has to be completey changed. First and foremost, it is evithet there is need for a formal
basis for device and OS protocols. Also, the implementgiitatess has to be simplified, since
the current programming model puts too much of a burden eeidprogrammers. What makes
the problem particularly complex is the fast rate at whichicks with new features are put onto
the market, requiring increasingly complex drivers. Hoareeven without new devices, fitting
or recreating existing drivers according to a new paradigget another difficult challenge.
The situation is not hopeless, however. There are alreadyrder of promising technologies
which are discussed in detail in Chapter 6. However, instdacteating a new paradigm for
device drivers, the next chapters will show how the currengmmming model can be made
more robust and which improvements can be expected forfutevice drivers.

32

CHAPTER

The CID Programming Language

This chapter introduces CiBC(for Drivers), an extended subset of the C programming language
which reflects the device driver programming model of theukikRernel. CiD provides built-in
support for three major device driver code aspects: coanay; synchronization and hardware
I/0. In addition, there is support for reusing code patténndevice driver code. A simple tem-
plate language is used to capture these patterns.

The CiD compiler is programmed with a set of rules that defagal operations in concurrent
device driver code. Because syntactical enhancementsg tilkocompiler to derive more accu-
rate information about the concurrent control flow of a deddver, the compiler can effectively
apply kernel-specific concurrency rules to perform mor@rapnsistency checks. As a result,
the compiler is capable of detecting race conditions andatiogs that lead to deadlocks.
Support for synchronization is twofold. CiD offers a Jakeynchr oni zed construct that
can be used by the programmer to mark critical sections ircdelriver code in order to protect
access to shared resources. The code generator infersrthetdocking primitive for each of
the critical sections, which reduces the potential of deeld. Since locking can be an expen-
sive operation, CiD also supports the generation of loek-fatomic operations. The compiler
translates arithmetic and bitwise operations on atomiakibes into atomic operations.

Also, CiD supports the programmer in generating device @@ecby providing means to de-
scribe and manipulate low-level data layouts such as messeggcriptors and device registers.
Additional consistency checks assist the programmer itingrmore robust low-level code.

4.1 Basic Language Design

The design of CiD is motivated by the question how progransnsan be assisted by a compiler
in creating more reliable device driver code. Unlike othgmomising) research approaches,
CiD builds on the traditional Linux driver programming mbdestead of changing it. Since
all kernel developers are intimately familiar with the C gramming language, CiD is based
on a C99 subset with extensions that provide demonstrataetigal support for (Linux) device
driver programming. Thus, programmers that are familiahwd should find themselves also

33

familiar with CiD. In order to avoid unnecessary complioas, an informal description of the
language will be provided. The basic subset which CiD busldsncludes:

e Arithmetic, logical, relational and bitwise expressions,

Control flow statements,

Functions,

User-defined types, i.est r uct s andt ypedef s

Unparameterized preprocessor macros

CiD features all arithmetic, logical, relational and bib&iexpressions except shorthand op-
erators. Operator precedence follows the definition fourttié C standard. Control flow state-
ments are limited to f -el se andwhi | e statements. There is also support gat os which
are used throughout in the kernel in conjunction with ehramndling.

The type system has been adapted to the needs of device pirdggramming. As part of the
adaption process, some types have been entirely remowvack ffhating point arithmetic is for-
bidden in kernel space, there is no support for the claskicaht anddoubl e types.

The handling of integer types has been simplified and made fitexible. The C99 standard
defines a rather confusing set of integer types with theinadizes varying from platform to
platform. Because this makes portability of data layoutalbersome, the Linux kernel provides
its own set of integer types which are architecture-depetidgpedef s that follow a clear and
consistent naming convention. While the CiD compiler usesLtinux types to generate code,
they were not explicitly integrated into the language. éast, CiD offers arbitrary sized integers
that are translated into their closest-fitting native typERis feature is useful when describing
low-level data layouts and allows the compiler to perforndifidnal consistency checks (see
section 3.3).

Unlike C, CiD does not support arithmetic on pointer typeprevent potential memory access
faults. Instead, pointers have been replaced with C++ Bkerences to enable the programmer
to define aliases and call-by-reference semantics for fumgiarameters. Cases where pointer
arithmetic can be useful (such as manipulating device mgnawe dealt with the hardware 1/10
features CiD provides.

CiD offers five new user-defined typedescriptors register files flags templatesandperdevice
contexts The types will be introduced in the following sections. tiddion, there are new func-
tion modifiers that denote execution context and driverygmints (see section 3.3).

The initial design of CiD also employed automatic memory aggment with a scope-based
memory model to deal with memory leaks. This model allowesl dcbmpiler to allocate and
cleanup a resource based on the life-time of the surrourstioge. While this approach seemed
reasonable at first glance, the main problem is that progemaefined error-handling for failed
allocations was not supported. However, CiD offers a comgge and provides the C++ in-
spirednewanddel et e operators for which the compiler infers suitable memorgators.

34

4.2 Support for Code Reuse

Device drivers that handle the same device class share corooue patterns which are also
known as “boilerplate” code. Boilerplate code typicallymarises allocation and initialization
of device-class-specific data structures and resouragistnaion with the corresponding device
class subsystem and cleanup code. However, boilerplai moag be also more complex and
include device-class specific logic, such as ring buffer agament for a NIC driver. It is com-
mon practice to use existing device driver code as referanddo copy, paste and adopt similar
code sections. The drawback of this approach is that changee original code have to be
propagated to all copy and pasted drivers. In contrast, Ciliges a cleaner way to reuse code
with templates. Every CiD device driver includes a templaltéch contains skeleton code for a
specific device class.

Listing 4.1 shows a fragment of the CiD template declaratwra PCl-based NIC driver. Ev-
ery template definition consists of a list of attributes, roidable functions (indicated by the
r equest -modifier) and external functions defined in the Linux kern<emplate may also
include type definitions as shown in the first line by the ogagesk buff _t, a handle to

a socket buffer. Opaque types are similar to C typedefs,hayt o not inherit operators from
their base types, except assignment, equality and indygag@érators.

Listing 4.2 shows an excerpt from the template definitiomtaming part of the boilerplate code.
Every template is divided into sections, containing na@eode mixed with template expres-
sions. For every overridable entry point, there must be amalggnamed section. A template
must also include anncl ude and aheader section (lines 1-12 and lines 14-22) which con-
stitute of #include directives and function declaratioespectively. This makes it easier for the
compiler to merge different template files together. Phebe section (lines 24-52) contains
boilerplate code to preinitialize the device.

Preinitialization consists of multiple steps which are $hene for every NIC driver, for instance,
allocating a custom data container for each device inst@meecall that a perdevice context),
allocating and registering a handle to the network layetingeDMA attributes, and so on. Tem-
plate code is parametrized with template expression whigldelimited with matching pairs of
$-tokens. During translation, the template compiler regdaapplied template variables (expres-
sions) with their bound values. Template variables cantbeedefined as attributes or function
parameters. The template language comes with a set of predefariables. These include
code insertion variables and constants like the name of ¢hieel driver. Internally, the com-
piler divides the code of every overridden function intorgmoint $: ent r y$, the “actual”
code$: code$, and cleanup cod#: exi t $. This division is necessary, because unlike the
C89 standard, CiD allows variable declarations mixed wigttesnents. Thus, th&: entry$
variable contains declarations, while the remaining cedales irs: code$. Initialization and
cleanup of embedded perdevice data structures such asttafdeée section 4.3) resides in the
variable$: per devi ce_i ni t $ and$: per devi ce_cl eanup$ (not shown in the exam-
ple), respectively.

Listing 4.3 shows how the template can be used in a CiD drildwon inclusion of the file
pcinet.cid, the compiler looks for the corresponding template deéinitin the inclusion path
(in this casepcinet.tl), and invokes the template compiler to translate the tetmgdie. The

35

compiler ensures that every entry point is overridden amdeis an error message otherwise.
As shown in the example, it is also possible to directly ‘i’ C code. C code sections are
delimited with pairs of the '@’-token.

One interesting feature is that compiler-defined functioaa be invoked within templates.
These functions can then access the AST of the program, vdaichoe very useful. For ex-
ample, the functioral | ocat or _f | ag determines the current execution context and infers a
suitable allocator, i.eGFP_KERNEL or G-P_ATOM C. This is useful for various functions that
need to allocate memory, as shown for thea_al | oc_coher ent section (line 55).

Listing 4.1: PCI NIC template declaration

opaque "struct _sk_buff+" sk _buff _t; /* Socket buffer handle =/

tenmpl ate PClI NET {
[+ Tenplate attributes =*/
int product _id;
int vendor id;
int tx_tinmeout;
unsigned int numregisters;

[+ Overridable entry points =/

[+ PClI hotpluggi ng events =/

request int probe(perdevice& dev, net_dev_t net_dev, readonly pci_dev_t
pdev);

request voi d di sconnect (perdevi ce& dev);

[+ NIC entry points */
request interrupt int irg(perdevice& dev);

/= External functions =/
byte[] dma_al |l oc_coherent(readonly pci_dev_t pdev, int size, dna_addr_t&
dma_addr);

4.3 Support for Concurrency and Synchronization

Execution Contexts

Every device driver function is associated with an executiontext which determines the types
of operations that are permitted within the function. Besgaeixecution contexts are fundamental
to the concurrency model, CiD provides two function mod#idnat define the context of a
function.

atom c void f() { / ... =/}
interrupt irgreturn_t ISR() { /* ... =/ }

36

15

Listing 4.2: Generic initialization code for PCl-based Ni@vers

include / @
#i ncl ude <l inux/pci.h>
#i ncl ude <l inux/pci_regs. h>
/= Supported PCl device */
struct pci_device_id _pcinet_id_table[] = {
{PCl _DEVI CE($vendor _i d$, $product_i d$)},
{0},
b
@
header / @
struct pci_driver _pcinet_pci_driver = {
. hane = "$:devi ce_nane$",
.id_table = pcinet_id_table,
. probe = _pcinet _probe,
[x ..]
b
@
pr obe(netdev, pdev) /@

$:entry$ /+ Variable declarations are expanded here =/

[+ Allocate perdevice context */

if (($netdev$ = alloc_etherdev(sizeof (_pcinet_priv))) == NULL) {
printk("$: device_nanme$_: _Allocation_of netdev_failed\n");
goto alloc_ether_dev_fail ed;

}

$net dev$- >net dev_ops=&tl _ops;

$net dev$- >wat chdog_timeo = $tx_timeout $;
$: perdevice_init$

if (register_netdev($netdev$))

{

printk("$: devi ce_nanme$_: _Regi stration_of _network _device_failed'\n");
goto netdev_fail ed;

}
[+ User defined code goes here ... x/
$: code$

if ((rc=pci_enabl e _device($pdev$))) {
printk("$: device_nanme$_: _pci_enabl e_device_failed\n");
goto pci_enabl e_fail ed;
}
@

dma_al | oc_coherent (pdev, size, dma_addr) /@ 37
dma_al | oc_coher ent (&$pdev$- >dev, $size$, dma_addr, $allocator_flag()$)
@

© 00 N O U b~ WN P

=
= o

Listing 4.3: Excerpt from the 8139C+ NIC driver, showing htmuse templates

#i ncl ude "pcinet.cid" /* Include our PCl-based NIC tenplate declaration x/

PCl NET. vendor _i d
PCI NET. product _i d
PClI NET. num r egi sters
PCI NET. t x_ti meout

Ox10EC;, /* Real tek =/
0x8139; /* 8139C+ «/
0x100;

6000;

[+ Data per device, automatically instantiated in the tenplate */
per devi ce {
bool vl an_enabl ed;

}

request int PCINET. probe(perdevi ce& dev, net_dev_t net_dev, pci_dev_t pdev)
{

dev. vl an_enabl ed = 0;
@rintk("rtl: _device_attached.\n"); @
return O;

}

Functions that are not declared with a context modifier eeeau process context. The
compiler ensures that there are no calls to blocking funstio an atomic function since this
may lead to a deadlock. The algorithm is trivial as it onlydseto walk through the call graph
and check if there is a function that violates the atomicityperty. The same rule applies to
interrupt handlers. An additional rule ensures that infgtrfunctions are not called by any other
function.

Deferred Work

Deferring computations to a later point in time is a commabordin Linux device drivers.
The kernel provides three mechanisms that realize deferoekt dynamic timerstasklets and
workqueues

CiD unifies these concepts with simple-to-udeferred blocks Listing 4.4 shows a fragment
of CiD code that handles an interrupt. The example shows iadlypattern in device driver
code. The top half of the interrupt handling routine deteesiwhat caused the interrupt, ac-
knowledges the interrupt and defers processing to a laiat potime. When translating the
code into native Linux kernel code, the CiD compiler perfertiiree steps. Listing 4.5 serves as
illustration and shows the converted device driver code.

In the first step, the compiler chooses a suitable mecharismaich deferred block. In the ex-
ample, the choice depends on the execution context of thaidurpr ocess. If process is
defined as an atomic function, then the deferred block willdpdaced with a tasklet. If, on the
other handpr ocess may block then a workqueue will be chosen instead. If the wi@t of
the deferred block has to be delayed by some amount of tiradgltitk can be extended with a
time parameter, e.gdef er 100ns { ...}. Depending on the operations inside the block,

38

Listing 4.4: Deferring work in an interrupt handler in CiD

perdevice {
int pending_tx;
queue_t request_queue; /* queue_t defined el sewhere x/

}

interrupt ISR(int irg, perdevice& dev) {
[+ Top half =/
/'l Read interrupt status register
/'l Acknow edge i nterrupt

/+ Bottom hal f =/

defer /+ 100 nms */ {
whil e (dev. pending_tx > 0)
{

process(dev. request _queue); /* process defined el sewhere */
dev. pendi ng_tx = dev.pending_tx - 1;

}

return | RQ_HANDLED

the compiler either chooses a dynamic timer or a delayed woekie to replace the block. In
the following, we assume that that no timing parameter isgmeandpr ocess is an atomic
function, and therefore, the bottom half will be executed tasklet.

In the second step, the compiler generates the functainer r ed_| SR i nst ance (lines
23-33) which contains the execution code for the tasklet, the bottom-half of the interrupt
handler (lines 28-31). The original deferred block is repthwith a call to the driver library that
instructs the kernel to schedule a tasklet (line 18).

In the third step, the compiler creates data-structurestéamers) that hold variables that were
part of the original function stack and have to be moved intdder scope (so that the tasklet
function can access them). Lines 1-4 define the contdi®&& _cont ai ner which stores the
reference to the perdevice instance and also holds thestasktance. The container is embed-
ded into the perdevice structures as defined in lines 6-9.coh&iner and the reference to the
device context is extracted from the parameter of the taikietiondef er r ed_| SR_i nst ance
(lines 24-26). Finally, the tasklet is initialized, i.e.sasiated with its function and container,
during device initialization (line 39). Currently, defed blocks may only access perdevice
contexts; access to the variables on the enclosing funstamk is not possible (with the excep-
tion of the perdevice& parameter).

In some cases, it is necessary to cancel or wait for the (pghéxecution of a deferred com-
putation. CiD offers thepat h type which represents instances of deferred computatiani- V
ables of typepat h can be assigned to deferred blocks. Listing 4.6 demonstraie this can
be put into use. In the example, the driver sends an asynohsoldSB control request
to the device. In the meanwhile, the driver waits for the afien to be finished by calling

39

Listing 4.5: Translated driver code

typedef struct {

per devi cex dev;

struct tasklet_struct tasklet_instance;
} 1SR cont ai ner;

typedef struct {

i nt pending_tx;

I SR_cont ai ner cont ai ner;
} perdevice;

© 0 N O U~ WN P

11 irqgreturn_t ISR(int irq, void* data) {
12 perdevi cex dev = (perdevicex) data;

13

14 /+* Read interrupt status register =*/

15

16 /= Acknowl edge interrupt =/

17

18 t askl et _schedul e(&dev- >t askl et _i nst ance) ;

19

20 return | RQ HANDLED;

21}

22

23 void deferred_I SR i nstance(unsigned | ong data) {
24 perdevi cex dev;

25 I SR _cont ai ner= contai ner = (ISR _contai nerx*)dat a;
26 dev = cont ai ner->dev;

27

28 whil e (dev->pending_tx > 0)

29 {

30 process(dev->request _queue);

31 dev->pendi ng_t x = dev->pending_tx - 1;
32 }

33 }

34

35 /[/* Device initialization */
36 int __devinit init() {

37 per devi cex dev;
38 [+ ..]
39 taskl et _i nit(&dev->container, deferred_I SR instance, (unsigned |ong)

dev- >cont ai ner- >t askl et _i nst ance)
40 }

40

Listing 4.6: Named deferred computations in use

perdevice {
conpletion_t conpl;
}

voi d func(perdevi ce& dev) {
/1 Send USB control request
usb_fill _control _urb(..., ub_urb_conplete, &conpl);

path tineout;

ti meout = defer 500ns {
conpl et e(&dev. conpl) ;

}

wai t _for_conpl etion(&dev.conpl); // Vit for the USB transfer to finish
cid.cancel _sync(tineout); /1 Shutdown timeout handl er

wai t _for_conpl eti on on the coordination structuionpl . Upon completion of the re-
quest, the functiomb_ur b_conpl et e will be called, indicating completion of the operation
by manipulatingconpl . If, however, the request does not finish within 500 millseds, the
request will be terminated prematurely witlorrpl et e(&dev. conpl) . After completion,
the driver terminates the pending timeout operatiomeout .

In general, named deferred blocks should be only used whssigbly necessary. Note that the
CiD compiler takes care of generating shutdown code for ipgndieferred computations when
the driver or its device is removed.

Concurrency Protocols

A device driver contains multiple entry points which aredked concurrently. By default, the
CiD compiler assumes that all entry points can be invokedubameously at any time. While
this assumption guarantees that every unsynchronizedsegd# be detected, it also leads to
a high number of false reports. Depending on steeof the device driver, some entry points
might be deactivated, while others are active. For exampl®n a network interface driver
receives a power-management suspend request, the pagpkestrdandling entry points will be
deactivated and only activated after a resume request.

To make the detection of race conditions more accurate, €dufesconcurrency protocols
which allow the programmer to specify the active entry pointeach state. As already men-
tioned, the specification of such a protocol is optional ardefich device driver, there may be
only one protocol. Listing 4.7 shows an excerpt of the corenay protocol of a NIC driver.
Every protocol is divided into two parts. The first part camsaa programmer-defined list of
device (driver) states and their active entry points. Fangxe, in the statBRI VER | NSERT,
the only active entry point isbdul e. i ni t. The second part captures state transitions which

41

Listing 4.7: Excerpt of the concurrency protocol from theONdriver 8139cp.cid

protocol {
/+ Device driver states and active entry points */
DRI VER | NSERT : Mbdule.init;

PCl _PROBE :
gl obal : || PCINET. probe, || PClI NET.disconnect;
perdevice : PClNET. probe;
NI C_RUNNI NG
gl obal : || PCINET.probe, || PCINET.disconnect, PCINET.irq, /* ...
* /[;
perdevice : PCINET.disconnect, PCINET.irq, /* ... */ ;

[* 0.0 =]

[+ State transitions triggered by function calls */
PCI NET.init -> PCl _PROBE ;
PCI NET. neti f_start_queue -> N C_RUNNI NG ;

are triggered by function calls or invocation of driver grpoints.

According to the protocol, after calling the function PCINmit (which registers with the PCI
subsystem), the driver switches to the PCI probing $&le PROBE. Since the driver supports
multiple devices, the probe and disconnect functi®t@ (NET. pr obe andPCl NET. suspend,
respectively), can be invoked simultaneously. They carldmiavoked in parallel to themselves
which is indicated by the ’||" prefix. Therefore, access tabgl device driver data has to be
synchronized. The situation is different for perdevicéaghowever. Since a disconnect request
is always associated with a previous probe request, acogsrdevice-data is implicitly seri-
alized. Therefore, the protocol allows to differentiatévien between global and per-device
scope.

If there is a deferred code block in the control path of anyeptiint, then the compiler extends
the protocol with an additional entry point as the deferremthk Whenever the corresponding
entry point is active, then all of its associated deferrempatations are active as well.

Synchronization

Locking is an essential aspect of multithreaded programgraimd often difficult to implement
correctly. As we have seen in chapter 2, the programming hiodeevice drivers is particularly
complex because of different lock types and execution stsite

CiD offers some relief to the programmer and providessthachr oni zed keyword to mark
critical sections in device driver code. The compiler agges each synchronization block with
the correct lock instance and lock type. This reduces thenpial for creating deadlocks due
to incorrect lock types or imbalanced locks. The compilesuges that blocking operations are
not called in synchronized blocks that are replaced withlepks. If a synchronization block

42

Listing 4.8: Comparison between traditional locking codd &iD locking code.

spi nl ock_t 1 ock; [+ Device interrupt =/
request interrupt irqg_handler(...)
/= Device interrupt =/ {
irqreturn_t irq_handler(...) synchroni zed {
{ /= Mani pul ate device/driver data */
spi n_Il ock(& ock); sone_operati on(devi ce_dat a) ;
}

/= Mani pul at e device/driver
data */ return | RQ_HANDLED;

sone_oper ati on(devi ce_dat a) }

/* Read request - Executes in process

spi n_unl ock(& ock) ; cont ext =/
request ssize_t read (...)

return | RQ HANDLED, {

} synchroni zed {
[+ Mani pul ate device/driver data */
/+ Read request - Executes in anot her _oper ati on(devi ce_data);
process contextx/ }

ssize_t read (...) }
{

spi n_l ock_i rqsave(& ock,

irq_flags);

/= Mani pul at e device/driver
data */
anot her _operati on(
devi ce_dat a) ;

spi n_unl ock_irqgrestore(& ock,
irq_flags);

contains a et ur n or got o statement, then the compiler releases the lock, if negessar
Listing 5.2 revisits the spinlock example from chapter 3 dathonstrates how it can be solved
with synchronization blocks in CiD. When inferring the cext lock type, the compiler only
distinguishes between spinlocks and mutexes even thowegketinel offers specialized variants
of spinlocks and semaphores which are optimized for maeltigladers. Theoretically, when
determining the correct lock type, factors such as read i@ watio and contention have to be
considered as well. However, the CiD compiler does not trgdiimate those factors. This is
because a simple analysis of the device driver tree has sti@t/im over 10,000 device driver
files, about 94% of all lock instances are made up by only tvpesy spinlocks and mutexes.
Figure 4.1 shows the distribution of lock instances of gliety in the driver tree. Also, when
instantiating a lock, two scopes have to be distinguishéabaj scope and perdevice scope. If

43

1800
1600]
1400
1200
1000
800
600
400

200
0 I— =

Number of lock instances

spinlock mutex semaphore rw_lock rw_semaphore rcu

Lock type

Figure 4.1: Kernel locking primitives and their uses in devdrivers. Spinlocks and mutexes
are the most commonly used lock types.

the protected resource is part of a device instance, thesoitesponding lock is declared in
the scope of the device. Although instantiating a lock inbgloscope is always correct, this
distinction is crucial for performance.

Synchronization blocks can be also placed around functidis to protect the resources along
the callgraph hierarchy, thus the following lines are pettjelegal in CiD:

byte shared[512];

request void read(...) { /* Read is reentrant =/
synchroni zed {

f();
}

void f() { /= Operate on 'shared =/ }

Atomic Expressions

Atomic expressions provide an efficient way to safely omei@t shared variables. Typical
uses of atomic variables and expressions include keepaia§y bf device status or counting the
number of pending 1/O operations. The CiD compiler is ablgaasform such expressions into
atomic operations. The algorithm walks through all exgogssin a CiD program and tries to
match the corresponding operator trees with atomic omerati Table 4.1 shows all code (and
operator tree) patterns the algorithm recognizes and thdtireg transformations. There is one

44

additional safety rule: there must be only a single occueeasf an atomic variable in an atomic
expression.

4.4 Support for Hardware 1/O

Hardware communication is an integral part of device dswehich usually involves writing
(error-prone) low-level which consists of a series of pemtions. CiD supports the program-
mer in writing device I/O code by providing kitags descriptorsandregister filesthat can be
used to describe low-level data structures and to commignigiéh devices.

Descriptors

Descriptors enable the programmer to define and operatewslelel data layouts such as DMA
descriptors or commands for message-oriented devices.llubtrate the use of descriptors,
table 4.2 shows the data layout of the S@8I t e(12) command which can be used to write
data to various kinds of SCSI-based storage devices. Thalatieaning of the fields is not
important, focus will be put onto the memory layout.

When translating a memory layout into C data-structuresghimportant details have to be
considered:packing byte alignmentindbyte order Listing 4.9 shows how th&vite(12)
command might be defined in C (with Linux kernel types) andiib C

Although the CiD code is much more verbose, there are seberadfits over the C code.
Unlike ordinary Cst r uct s, descriptors carry more information about the actual dajyaut
and thus, enable the compiler to perform consistency cha##do generate low-level bit code
for accessing individual fields.

Every descriptor field declaration is defined in the contdd mange expression which denotes
the byte region (or byte position) in which the correspogdieclarations reside. This allows the
programmer to specify constraints on packing and byteroffeler example, the second byte of
the Write(12) descriptor is occupied by the writede flags and the LUN (logical unit number)

of adevice. The programmer can access both fields sepatatelyntrast, in the original C code,

both fields have to be expressed with the same field declarafioeoretically, the programmer

could use bit fields to split the declaration, but the C stashdtpes not define the ordering of
bit fields. Thus, portable device drivers never use bit fiétdshardware I/O transactions. In

C code, when writing the variableun to the LUN field, the following operations have to be
performed:

SCSI _Witel2 wi2;

lun
wl2. LUN _node

(lun << 5) | wl2.LUN node;
| un;

In CiD , the compiler is capable of generating the above bétrafions, and, so the programmer
can simply write:

wl2. LUN = | un;
The optional bit range specifiers (at the end of a declarpt@hthe compiler about the exact bit
positions of packed fields.

45

Table 4.1: Atomic code patterns the CiD compiler recogniaes their transformations.

CiD Code \ Transformation

Read-and-write Operations

int A<atomic>; atomic_tA,;
int num; int num;
A =num; atomic_set(num, &A);
num = A; num = atomic_read(&A);
Arithmetic
A=A+1; atomic_inc(&A);
A=A-1, atomic_dec(&A);
num=A+1, num = atomic_inc_return(&A);
num=A-1, num = atomic_dec_return(&A);
A=A+ num; atomic_add(num, &A);
A=A-num; atomic_sub(num, &A);
num = A + num; num = atomic_add_return(num, &A);
num = A - num; num = atomic_sub_return(hum, &A);

Test-and-set operations

if (A=A-1, A==0)then if (atomic_dec_and_test(&A}hen
end if end if
if (A=A+1, A ==0)then if (atomic_inc_and_test(&A)hen
end if end if

Bit operations

flags(3)status_t {B1, B2, B3}; u8 status;

status_t statustomic>;

status.B1 =1; set_bit(0, &status);
status.B2 = 0; clear_bit(1, &status);
status.B3 =-status.B3; toggle bit(2, &status);

46

Table 4.2: Data-layout of the SCSI_ WRITE12 command

| byte / bit— 7\6\5\ 4 \ 3 \ 2 \ 1 \ 0
0 Opcode = 0x2A

1 LUN | DPO| FUA | EBP | Reserved RelAdr
2-5 LBA

6 Reserved

7-8 Transfer length

9 Control

Listing 4.9: Comparison between C structs and CiD desaspto

#define Rel Adr (1 << 4) flags(5) wi2_flags {
#defi ne EBP (1 << 3) Rel Adr,
#define FUA (1 << 2) _, I~ Reserved x/
#defi ne DPO 1 EBP,
FUA,
DPO
}
typedef struct { descriptor SCSI _Witel2 {
u8 op_code; 0: int(8) op_code;
u8 LUN node; 1: wl2_fl ags node: O0..4;
__le32 LBA int(3) LUN 5..7;
u32 reserved; 2..5: int(32) LBA;
__1el16 TransferLengt h; 6: _; |+ Reserved =/
u8 Control; 7..8: int(16) TransferlLength;
} __attribute_ ((packed)) 9: int(8) Control;

SCSI_Witel2;

An important detail to consider when operating on low-legtata-layouts data is byte-order.
Bus protocols and device controllers do not necessarilgeagiith the byte order of the local
CPU. Thus, byte order conversions have to be computed whamaaicating with a device.
Programmers have to worry about byte-order only once, wiadinidg the layout. Whenever
a descriptor field is read from or written to, the compilervamnts the field or the new value
into the correct byte order. The compiler simply uses thaikigupplied conversion functions.
The compiler uses a simple rule for determining the byte rorifehe byte interval of a field
declaration is ascending, its byte order is little-end@therwise big-endian. For example, the
byte interval2. . 5 of the LUN field denotes litte-endian byte order. The interval 2, on the
other hand, would denote big-endian byte order.

Finally, the compiler performs a set of consistency checkswery descriptor definition which
ensure that

1. there are no overlapping byte and bit intervals,

47

2. there are no gaps between byte and bit intervals,
3. all fields exactly fit into their respective byte interyals

4. the sizes of all bit intervals coincide with the bit sizdgh®ir corresponding field data
types.

These assertions ensure that every bit and byte in an desdgpmccounted for and check
whether a descriptor definition is complete. If there aresedubytes or bits an descriptor, then
the programmer has to use “don’t care” field$ to explicitly fill up unneeded space.

There is one important restriction when defining descriptdescriptor fields must be either
scalar types or byte arrays. In particular, this means tbstimg of descriptors is forbidden and
there must not be reference fields.

Register files

Register files enable the programmer to define device redggteuts and to communicate with
devices that expose their registers to a bus. Listing 4.0&/sta CiD fragment of the register
definition for the RTL8139 network interface controller. €ty register is declared in the con-

Listing 4.10: CiD Register file definition for the RTL8139CGlI

typedef unsigned int(1l) bit;

regfile RTL {
[+ Chip comrand register */

0x37:

. 71..5; /* Reserved */

bit CVMD_RST : 4; [+ Reset =*/

bit CVMD RE 3; |/ Receiver enable */

bit CMD TE 2; /* Transmtter enable */

R

bit CVMD BUFE: O; /* Receive buffer enpty? =/
[+ Transmt status descriptor x/
0x10..0x13, ..., Oxlc..Ox1if:

bit CRS: 31; /* Carrier sense |ost x/

[* ... x]

bit O\ 13; /* Omn bit, O starts transn ssion */

unsigned int(13) TX_SIZE: 12..0; /* Packet size */

text of a byte region which refers to the base address of thieeleFor example, the command
register is mapped at offset 0x37. There is also the pogibil define register groups, which
is demonstrated by the transmit status descriptor (TSDiitiefi. The RTL controller defines 4
identical, 4 byte status descriptors, which are mappedartontiguous area in the register file
(from 0x10 to Ox1f). Instead of defining the same set or regssall over again, programmers

48

can use the shorthand notatiom10. . 0x13, ..., Oxlc...O0x1f to define the layout
only once. The compiler performs the same consistency sheslit does on descriptors, i.e., it
ensures that the register file definition is complete.

Listing 4.11 shows how the register file definition can be usedommunicate with the con-
troller. As the example shows, I/O is performed by accesSiglds of the RTL namespace.

Listing 4.11: I/O interaction with the RTL controller

[+ Initialize the NIC «/
request int PCINET.start_nic(perdevi ce& dev, net_dev_t netdev)

{

RTL. CMD_RST = 1; [+ Reset device =/

[x 0.0 *]

RTL. CMD_TE = 1; /* Enable transmtter =/
[x 0.0 *]

RTL. CMD_RE = 1; /= Enabl e receiver */

}

/* Packet transm ssion request =*/
request int PCINET.start_xmit(perdevice& dev, sk_buff_t skbuff)

{

[+ dev.cur _tx - index to current transmtter status register =*/

RTL. TX_SI ZE[dev. cur _t x] = PClI NET. skb_dat a_I| en(skbuff);
RTL. OW\[dev. cur _tx] = O;
}

Register groups are accessed with the array index opgrhtorhe actual 1/0O address of the de-
vice is hidden as a field in the perdevice context, which thrdeapenerator uses as an argument
to thei owri t e/ i or ead functions (see chapter 2). Therefore, the register file spaees
may be only accessed within perdevice context.

How the memory address (the pointer) to the device regideeisfobtained depends on the bus
and is realized in the corresponding code template. For pleartine template for PCI NICs uses
thepci _i omap function to create a pointer to the device registers. Inmoi@ensure correct-
ness of I/O code, there are three rules to which the compileer@s. The first rule states that the
size of the byte interval determines the width of the read mtevaccess. For example, the chip
command register (at offset 0x37) is accessed with thewr i t e| r ead} 8 functions, while
the transmit status registers are accessed with®few i t e| r ead} 32 functions.

The second rule states that consecutive write operatiotieeteame register group (offset) are
combined into a single write operation. In the example, taedmit functiorPCl NET. st art -
_xm t relies on this rule because the RTL specification statesthiegd®N bit and TX_SI ZE
have to be written at the same time.

The third rule ensures that unmodified register bits aregpves if the programmer writes only
to a portion of a register group. The compiler issues a readifyrwrite operation in this case.
One crucial detail the programmer currently has to pay tttero is the possibility of reordered
device register memory accesses. This is a problem unigquert@ory mapped I/O, and the only

49

way to compensate is with memory barriers. Currently, mgnharriers have to be placed by
the programmer manually. Also, the programmer has to beeawfatevice-specific side-effects
when reading or writing to registers.

4.5 Implementation

This section gives a short overview of the compiler impletaton. Focus will be put onto the
concurrency analysis, since it is the most elaborate amudsting part of the compiler. The
other analyses are straightforward and can be browsed ootheiler source files.

Compiler Infrastructure

The architecture of the compiler is very simple and follotes tlassical division into front- and
backend.

The frontend uses PLY [Beazley, 2010], a python port of thi-kwewn lex and yacc tools, to
scan and parse input files. The parser generates an objgatear abstract syntax tree (AST)
which is processed by analysis and transformation ruleshé@avisitor pattern [Gamma et al.,
1995].

The backend consists of the code generator and the templagiler. The code generator tra-
verses the (transformed) AST and directly generates Ghséaites and uses the template compiler
to generate code from templates. The compiler relies on t@npiler to perform low-level op-
timizations such as constant folding, or common-subesjwaselimination. Table 4.3 presents
an overview of the most important source files of the compiler

50

TS

Table 4.3: Overview of the most important compiler sourcssfil

Package | Module / File | Description
Core components
cid.py “Executable”; wires all analysis files together
lexer.py Lexer
cid parser.py Grammar definition
cid.syntree nodes.py AST node classes
cid.analysis name_analysis.py Name analysis
cid.analysis operator_usage_analysis Type analysis on operators and functions
Concurrency
cid.analysis function_analysis.py Calculation of root sets

cid.analysis.concurrency

atomic_expression_analysis.pyTransformation of atomic expressions

deferredwork_analysis.py
protocol_analysis.py

Replace defer blocks with tasklets, workqueues or timers
Preprocess programmer-supplied protocol information

sblock_inheritance_analysis.pylnheritance of synchronization blocks

concurrency_analysis.py

Detection of race conditions and lock inference. Also, &fec
blocking calls in atomic context, or while holding spiniack

Hardware I/O

cid.analysis.hwio

layout_analysis.py
descriptor_analysis.py

register_file_analysis.py

Consistency checks for memory layouts, i.e., descriptodsrag-
ister files

Generate bit manipulation code for field access, generate
order conversions

Replace register file accesses with I/O code; coalesce aathse
write operations

Templates a

nd Codegenerator

cid.codgen

codegen.py
template_compiler.py

template_functions.py

Code generator: emits C code from AST nodes

Template compiler: parses template files, transforms tetaeix-
pressions, emits C code

List of compiler functions that can be invoked from templetee

Listing 4.12: CiD example of concurrent reads and writes.

int a; request voi d e2(perdevice& dev)
perdevice { int z; } {
stop_el();
protocol { read_a();
INlT: || el, e2, e3;
NOT_E1: e2, es3; synchroni zed {
read_z();
stop_el -> NOT_E1; }
} }
interrupt request void el() request voi d e3(perdevice& dev)
{ {
synchroni zed { synchroni zed {
wite_a(); read_a();
} wite_z();
} }
}

Concurrency Analysis

The concurrency analysis has two goals: to detect and repgrtace conditions and to infer
the correct lock instance and type for every synchronindbiock. Listing 4.12 shows a simple
example of concurrent CiD code that will be used to explagahalysis.

The analysis comprises the following tasks:

1. Compute the set of concurrent variable accesses.
2. Based on this set, determine the set of conflicting acsesse

3. Compute which synchronization blocks belong togethed, determine the correct lock
type.

Instead of showing the native Python implementation of tickvidual steps, a more abstract
language is chosen to explain the ideas behind the algaitbravoid going into unnecessary
detailg.

The first step is depicted by Algorithm 1. When the algoritlemtinates, every variable is asso-
ciated with a tablegoncur r ent _accesses, which keeps track of read and write operations
(RWAccesses) with respect to the current entry poimp and all active entry points. The set of

active entry points is defined by the supplied concurrencyogol (or the default protocol with

Y In contrast to the specified algorithms, the implementadiar more complex: On the one hand, the imple-
mentation combines all three steps into one single passh®ather hand, the AST has to be interpreted, protocol
information has to be inspected, active entry points areutatied and so on. Nonetheless, the algorithms convey the
basic idea and serve as an aid to understand the reasond Hehimplementation.

52

all entry points enabled at any time). The functiset i veEnt r yPoi nt s computes the entry
points for any given source location in the program. Tabdesthows the results of the algorithm
for the running example. Note that sine@ disables entry poinél, there are no concurrent
accesses from entry poietl as indicated by the empty list.

Algorithm 1 Computing concurrent accesses in CiD code

for all ep € EntryPoints(Programjo
for all rw € RWAccessesfp) do
for all a € ActiveEntryPointsfw) do
rw.variable.concurrent_accessgg[a] += [rw]
end for
end for
end for

Table 4.4: Results of the concurrency analysis for the progn Listing 4.12

a |el e2 e3 z |el e2 e3

el | [write_a] | [write_a] | [write_a] el|] 1 1

e2 |] [read_a] | [read_a] e2|] [read_z] | [read_Z]
e3 | [read_a] | [read_a] | [read_a] e3 | [write_z] | [write_z] | [write_z]

Algorithm 2 performs the second step and reports any racditbmms. For every variable
access, the algorithm checks if there is a conflict, i.e ea@tlone write operation happening at
the same time. In this case, the access has to be synchrofizetiown in the algorithm, there
are two cases of synchronization, either via a surroundinigherited synchronization block, or
if the variable is declared as atomic. Whether the atomicesgion can be converted into na-
tive code is determined by the atomic expression evalubltote that parallel read accesses are
not regarded as conflicting accesses. For example, funefaran safely read froma without
synchronization.

After all synchronized accesses have been determinedaghstep of the algorithm can be per-
formed (see Algorithm 3). The basic idea of the algorithmeasyvsimple: If the concurrent
variablesz andy are protected with an enclosing synchronization blSgkthen they are re-
lated. This relation is transitive: i happens to be synchronized $h along withy, thenzx is
also related tgy, i.e., S; and.S; have to be replaced with the same lock instance. To keepghing
simple, we assume that this relation has already been ceadhpand the functiorsync Set
simply yields all synchronization blocks for a given vat@bnd the current entry point infor-
mation. The choice for the correct lock type is trivial. Iflast one variable in the transitive
closure is shared within interrupt or atomic context, a lggik has to be used. Otherwise it is
safe to use a mutex. Computing the correct scope is analpgtieseas global scope is favored
over per-device scope. In the example, all synchronizatiocks are replaced with a single
global spinlock instance. Note that even thowgghdeactivates entry poirél before reading
from z, the same lock has to be used, beca@synchronizes along withz.

53

Algorithm 2 Detecting race conditions in CiD code.
for all ep € EntryPoints(Programjo
for all rw € RWAccessesfp) do
for all a € ActiveEntryPointsfw) do
acc_list <+ rw.variable.concurrent_accessgggp]

if (rw = WriteAccessA |acc_list| > 0) V WriteAccesse acc_list V ISReentrany,
ScopeOffw)) then
{Conflicting access detected. Check for explicit synchzation.}
synchronized < EnclosingSyncBlock(w) # NULL
synchronized < synchronized V rw.variable.type = Atomic
synchronized < synchronized V | f.inherited_sblockg >= f.invocationsA
f.invocations >0

if = synchronized then
Report race condition farw
end if

rw.variable.synchronized synchronized
end if
end for
end for
end for

Algorithm 3 Compute lock instances and lock types.

for all ep € EntryPoints(Programjo
for all rw € RWAccessesfp) do
{Compute initial lock}
if Modifier(ep) = InterruptModifierv Modifier(ep) = AtomicModifier then
lock + Spinlock(shared_with_irg=(Modifietp) = InterruptModifier))
else
lock + Mutex()
end if
scope «— ScopeOffw.variable)
{Propagate locks}
for all a € ActiveEntryPointsfw) do
for all sblock € SyncSetfw.variable,ep, a) do
sblock.lock <— ChooseLock{block, lock)
sblock.lock.scope— ChooseScopeblock, scope)
end for
end for
end for
end for

54

CHAPTER

Experimental Evaluation

This chapter presents an experimental analysis of CiDguUage extensions. In order to demon-
strate the practical usefulness of the newly added languageepts, two Linux drivers have
been converted: the network driver for the 8139C+ chipse@[ek, 2002]8139cp and the
low-performance USB mass storage drivdy. The two drivers have been selected because
they operate on two different communication models: the Mii€er is register-oriented, while
the USB mass storage driver is messaged based. The driveesasereference to analyse the
proposed concurrency, hardware I/O and template features.

5.1 Methodology

In the course of this thesis, a broad spectrum of device rivave been studied, ranging from
simple input drivers to more complex network and block dewcivers. Among these, two
moderately complex drivers have been selected and codviettie CiD to assess the proposed
language extensions and to test the compiler implementatio

The first driver controls Realtek’'s 8139C+ fast-etherne€ Nhipset [Realtek, 2002] which is
used in cost-effective, low-end network devices. The drhas been chosen because, unlike
more complex drivers such as the widely used E1000 drivegasta manageable code size (i.e.,
2000 lines of code compared to over 10,000 lines of code) raziddes all important aspects of
a NIC driver. The 8139C+ driver serves as assessment fois@@&dware 1/0, concurrency and
code reuse features.

The second driver that has been converted isithdriver (/drivers/block/ub.c), a low-performance
driver for USB mass storage devices. While this driver ispdémnthan the standard high-
performance driveasb_st or age, its complicated control-flow serves as a good test for CiD’s
concurrency and synchronisation features and their imghdation.

The NIC driver has been tested with an emulated RTL8139C+aitar. For this purpose, the
machine emulator QEMU (version 0.12.5) [Bellard, 2011jhmmg the Linux kernel version
2.6.35 was used. The USB mass storage driver was testedheith .35 kernel running on a
ThinkPad T60 and various USB thumb drives as test devices.

55

5.2 Concurrency and Synchronization

Table 5.1 shows various statistics on the converted driish were obtained with the CiD
compiler. The remainder of this section will give a detaidathlysis on the data.

Table 5.1: Statistics on concurrency and synchronizathtained with the CiD compiler

| USB Mass Storage Driver| 8139C+ NIC Driver
Concurrency data
Number of entry points 13 27
Reported race conditions (without protocol) 889 600
Reported race conditions (with protocol) 512 367
Falsely reported race conditions 110 40
Inferred deferred work instances 11 0
Synchronization data
Number of critical sections 14 18
Inferred lock instances 3 1
Inferred atomic operations 8 0
Inferred allocator flags 13 5

Detected Race Conditions

The NIC and the mass storage driver have many interleavidg paths which is clearly indi-
cated by the high number of concurrent accesses (i.e., cexhtions without protocol informa-
tion and synchronization blocks removed) to shared vagglviferred by the CiD compiler (see
Table 5.1).

Table 5.1 shows that concurrency protocols significantlgrowe the compiler’s ability to cor-
rectly identify race conditions. With protocols, reductioof 38 to 42 % are achieved, yielding
to a false positive rate of 6% to 21% for the fully synchroniziiver. In the NIC driver, with all
synchronization blocks in place, the compiler reports 4€efsace conditions. On the one hand,
these are due to 28 concurrent accesses to the netdevide kdrich holds device statistics. In
the current implementation, the individual statisticsdgebf the handle are indirectly accessed
with helper functions, e.gRPCl NET. r x_ok(dev. net dev) . Thus, the compiler does not
recognize that actually separate fields are safely acce€3edhe other hand, the 12 remain-
ing race condition reports are due to corner-cases in whibkrerace conditions do not affect
correctness of the driver or are avoided by lock-free syomiaation. Figure 5.1 illustrates the
12 cases with a compiler-generated data-flow callgraphtingi$.2 shows an example of the
driver’s polling routine and interrupt handler which cormeutly access the status registeSR

in a safe manner.

Accurate detection of race conditions in the mass storagerds very difficult. This is because
the driver makes heavy use of deferred work, asynchrongifuns and uses implicit synchro-
nization patterns which are hard to detect with the curnmqiémentation. Listing 5.1 shows a
simple case of implicit synchronization. The compiler ngpdhat there is a conflict for the vari-

56

io location: (62/0x3e,63/0x3f)(4 conflicts)

irq

rx_frags(3 conflicts)

ethtool_get_stat{

vigrp(2 conflfcts)

io location: (224/0xe0,225/0xe1)(1 _eo6nflict)

vlan_rx_registe

tx_timeout_handle

I ethtool_set_rx_csur{

igAocation: (80/0x50,80/0x50)(2 conflicts

ethtool_get_eepro

~ read_eeprom v‘
= i

'1‘ eeprom_cmd_start

ethtool_set_wol

ethtool_get_eeprom_le

ethtool_set_eepro

write_eeprom

Figure 5.1: Compiler-generated conflict graph of the 8138@ver. Blue boxes represent driver
entry points, red edges denote unsynchronized data paths.

abledev. conp, between the deferred computation and the waiting statentéowever, the

value is intended to be changed concurrently. Also, whatxiagnple does not show is that there
are numerous other instances in which this pattern occods,thus the number of race reports
easily adds up. Theoretically, protocols could be used poesss safety, but unfortunately, there
is currently no way to address named deferred computatiéwen if this was possible, the re-

57

sulting protocol would get even more convoluted than itadseis (with 16 state transitions and
5 states). However, the results could improve with langusgpport for coordination patterns.
Nonetheless, the mass storage driver represents a ratr@nexcase. For register-based drivers
with a moderately complex control flow, the concurrency wsial results can be expected to
match with the converted 8139cp driver.

Listing 5.1: A case of implicit synchronization in the massrage driver

request int USB. probe(perdevice& dev, ...)

{
[+ ... *]
ub_sync_get maxl un(dev, ...);

}

i nt ub_sync_get maxl un(per devi ce& dev)

{

ti meout = defer 500 ns {
@onpl et e@ &dev. conp) ;
}

cid.wait_for_conpletion(&dev.conp);
ci d. cancel _sync(tineout);

Locking

Both, the NIC and the mass storage driver, use locks as thefragaent type of synchronisa-
tion. Locking in the NIC driver is straightforward. Thereedt8 critical sections and all of them
are protected with a single per-device spinlock. The CiD miten infers almost all NIC driver
locks correctly, with the exception of one critical sectidrhis is due to a limitation in the ex-
pressiveness of register files, as Listing 5.3 shows. Tlaiklpm can be worked around with by
inducing a redundant data-flow dependency between relatezhcsections, i.e., reading from
a shared variable or register location.

Locking in the USB mass storage driver is more complicatddciBdevice drivers usually use a
spinlock to interact with the I/O queue and to protect caitigections. This cannot be expressed
with synchronization blocks, since the programmer canaot gccess to lock instances and, for
example, pass a dedicated queue lock to the blocklayermddstn the converted driver code,
the template takes care of instantiation of the queue lobKewhe compiler infers separate lock
instances for the critical sections. The compiler infere additional lock for the per-device
counteropenc which keeps track of the number of processes which have dpireedevice.

In the original driver, this counter is protected by the sldagueue lock, but since there is not
data-flow dependency to other shared variables, the CiD ibeimpfers a separate lock. This
seems to be correct, however, in case of doubt, applying ateeftbw dependency trick will
work.

58

Listing 5.2: Implicit synchronization in the RTL8139C+ der

request atomic int PCINET.rx_poll(...) [+ Device interrupt =/
{ request interrupt PCINET.irq
int rx; (...)
{ .
rx_status_| oop: intr_t status
rx = 0;
RTL. I SR = cp_rx_i ntr_nask; status = RTL. ISR
while (1) { /* Receive packets =*/ /+ Clear all interrupts =/
if (status & DescOan) { RTL.I SR = status & ~
br eak; cp_rx_intr_mask;
}
if (rx >= budget) { // Are we done
with all packets? return O;
br eak; }
}
}

if (rx < budget) {

/* Inplicit synchronization: process
remai ni ng packets if we received
packets in the meanwhile =/

if (RTL.ISR & cp_rx_intr_mask) {

goto rx_status_| oop;

}

}

Listing 5.3: Establishing data-flow dependencies to colmking code.

| *
Read the contents of all registers, copy to user-space.

Currently not supported by G D, so we have to use a workaround
*/

request voi d PClI NET. et ht ool _get _regs(perdevi ce& dev, ., Vvoi d& p)
{
synchroni zed {
@rencpy_from o(p, _perdev_instance ->_ ionem _, 0x100);@/+* Can't do that
in CGD */
cid.nop(dev.tx_head); // Establish data-flow dependency (wi |l not
gener at e code)
}
}

59

Atomic Operations

The mass storage driver uses the per-device atomic vapadlson to keep track of the con-
nection status of the device. The operations on the varaklgery simple and constitute of read
and set operations. In total, all 8 atomic operations haea berrectly inferred by the compiler.

Deferred Work

Among the two drivers, only the mass storage driver usesrdefevork. Although the NIC
driver comprises an interrupt handler, it uses the NAPI (network API) to bounce off CPU-
intensive computations. The CiD distribution comes witlolthstyle network driverr(t | . ci d)
which demonstrates what a traditional interrupt handleksdike. Contemporary drivers, how-
ever, use the NAPI as it provides important features suchofiware implemented interrupt
mitigation.

The mass storage driver uses two kinds of deferred work:rdigw@mers and a single workqueue.
Dynamic timers are used to cancel delayed, asynchronougfdB8&actions, while the workqueue
implements the state machine for the driver and proces@esdimmands. The workqueue and
the dynamic timers have been successfully replaced wittraaf blocks and correctly inferred
by the compiler.

One problem with the current implementation is that everfgrded computation is associated
with a separate handle. This leads to a considerable irecirdsnary size as Table 5.2 shows.
Future versions could easily overcome this problem by atigwhe programmer to specify an
identifier for each deferred block to share handles.

Deadlock Prevention

In Linux device driver code, there are numerous ways to erdatdlocks. In the converted
drivers, the compiler ensures that following propertieklho

e There are no blocking function calls while holding a spikioc
e There are no blocking function calls in atomic context

e Locks are always balanced

The first two properties have been verified by placing bloglkgalls in atomic functions
and synchronization blocks that are replaced with spirdo@pecial attention has to be paid to
functions whose blocking behavior is determined by an atiocflag. This is important because
choosing the wrong allocator flag may lead to a deadlock. énGHD drivers, these flags are
automatically inferred by the compiler, thus preventing tihance for deadlocks. This means
that the functions are now context insensitive and unadtbédty future code refactorings. In
the mass storage driver and the NIC driver, 13 and 5 flagsectigply, have been inferred by
the compiler. Finally, in the generated code, all locks adamced which is a seemingly trivial
consequence that comes with the use of synchronizatiokdldtowever, care has to be taken
when returning from a function while holding a lock, whichghi not be always immediately

60

apparent. In the mass storage driver, there are two such wdmeh are handled correctly by the
compiler.

Table 5.2: Code statistics of the converted and originafedsi The NIC driver code size could
be reduced by 14%. In contrast, the mass storage driver shiowmerease in code size because
CiD does not provide all concise syntax features of C, yetrdases in binary size are due to
redundant HW 1/O operations and wastefully instantiateferded work.

Drivers
8139C+ - C/CiD | USB Mass Storage - C/ CiD
Physical SLOC 1607 /1377 1584 /1701
Binary Size 31,549/ 34,233 33,960 / 26,960

5.3 Hardware I/O

The hardware I/O features have been used in both, the NI@rdaivd the USB mass storage
driver. However, since the mass storage drive is messageted, it only serves as a test for
descriptors. The NIC driver, on the other hand, uses ddecsiand register files. The main
criteria of evaluation was the number of redundant openatgenerated by the compiler, and, of
course, correctness.

Descriptors

The NIC driver uses descriptors to operate on DMA ring bgffiEr sending and receiving
packets. In the USB mass storage driver, descriptors actosmcode data-transfer commands.
When reading or writing descriptor fields, there is a persitige the compiler inserts conversion
functions. This is no issue for the network driver, but in thass storage driver, there are 3
instances in which no such conversion is necessary. Therevarcauses for this. First, when
comparing descriptor fields, no byte order conversions aoessary. This was not considered
during implementation, but the compiler could be updateth \ai simple optimization rule to
handle this case. Second, the command descriptor of the st@age protocol contains a tag
field that identifies the current transaction for which itsebgrder does not matter. This cannot
be expressed with the current syntax, but descriptor fiedthdations could be extended with a
don’t-care modifier for byte-order.

However, there are other accommodations which have to be.dome feature that would be
helpful is inheritance of data-layouts. For example, thekpatransmission descriptor of the
8139C+ chipset changes part of its layout (the first 32 biépetiding on its state. Currently, this
cannot be expressed with descriptors. Therefore, two apand almost identical descriptor
layouts have been definied. Future versions should consitieritance to avoid unnecessary

typing.

61

Register Files

In the original 8139C+ driver, there are 78 1/O operationdie TTiD compiler generates 120
I/O operations which is a factor of 1.5 increase comparethecoriginal code. The result was
expected to be much lower because the original I/O intemaatbde is very simple, thus not
requiring any special considerations. There are two expiams.

First, the compiler always generates read-modify-writerapons from writes to individual reg-
isters of a register group, regardless of the inter-procddiata-flow. For example, during
initialization phase, the transmitter and receiver of th€ ldre enabled by changing the corre-
sponding bits in the Command register. Because all othsiibthe Command register are left
untouched, the compiler issues a read-modify-write opmerdb protect their values. However,
during initialization, no other execution trace toucheasngister, which is unknown to the com-
piler.

Second, the expressiveness of register files is ratherlimand not all access patterns can be
easily expressed with CiD’s register files. Once a registeng has been divided into individual
registers, it is not possible to access the entire group. ddew as the 8139cp driver shows,
this is necessary in some instances. The original drives ageer-device copy of the Command
registercnd to keep track of important changes such as enabled/disahltksum offloading.
In the converted driver, the changed bits have to be writtark individually, thus increasing the
number of I/O operations.

A quick performance test withet per f revealed no significant performance impacts. This
might be a bit surprising, but this was expected since thengaint I/O operations are scattered
evenly over the source code, and thus, different functitesl However, more detailed testing
might reveal performance penalities, but this was not tioesmf this thesis (and the compiler
implementation).

In order to eliminate redundant read-modify write opetaiawo steps have to be taken. First,
the hardware 1/O analysis has to be made aware of the regtifts concurrency analysis to de-
termine possible conflicts. Second, the register file spatiéin has to offer some way to specify
whether it is safe to concurrently access individual bita oégister. This should be considered
for future versions.

Whether the resulting I1/O code shows an increase in reatyaisildebatable. The main reason
is that the 8139 chipset does not define a very complicatedteedayout, and therefore, 1/0
interaction is straightforward. Also, the original driviervery well written and the I/O code is
easy to read. In fact, the CiD code is even more verbose bedadigidual register flags can be
only accessed separately (with a clean register file degnr)p However, the programmer can
choose to represent individual flags as a single integerayperead or write all flags at once.
The drawback is that this would prevent the compiler fronfgraning consistency checks due
to lost layout information. Also, numerical (typically hakecimal) numbers that represent a
combination of flag values are more difficult to read. Frons ghdint of view, more verbosity
means also clearer code.

62

5.4 Code Reuse and Separation of Concerns

Four templates have been written to support the creatiomefdlSB mass storage and the
RTL8139 driver. The templateodul e. t | contains bootstrap code for a typical Linux module
and is included by every device driver. The blocklayer teatedbl ockl ayer . t1 contains
boilerplate code to set up a block device and supports basiatons for the interaction with
the blocklayer. Similarly, theisb. t | template includes code to interact with the USB layer.
The USB mass storage driver uses all three aforementionggldges. The network driver uses
thepci net . t | template which interacts with the network and the PCI layer.

Code Reuse

With the PCI template approximately 14% of the original NIiGver code could be reused. The
majority of code reductions is due to setup code for the P@lrmetwork systems, including
acquisition and release of 1/0 space, setting up the imefrandler, and initialization of sub-
system data-structures such as function pointer tables.

The result could be vastly improved by adding packet pracgdegic to the template. For
example, the Linux kernel distribution already featuresil&ffedged code template, but it is
intended to be used by 8139C+ based chip%deiswever, there are, for instance, similarities in
the ring buffer management of the E1000, the 8319C+ chipwskbther NICs, which could be
exploited.

In fact, better results have been achieved by Conwell witiNDL language (see [Conway and
Edwards, 2004]). The NDL driver for the NE2000 NIC comprisedy half as many lines of
code as the original Linux driver. The corresponding NDLetemplate is more elaborate than
the CiD template and contains almost all of the OS-specifitecdHowever, a deeper investi-
gation reveals that the template also contains devicefgpeode that cannot be reused in the
8139C+ driver, for instance, EISA bus initialization, or FIROM 1/O code. In contrast, the CiD
template contains only code that can be reused by all P@ebs$C drivers.

With the USB and block layer templates, only 68 lines of codalad be reused in the mass
storage driver. This result is very disappointing as it wagseeted that at least 10% of the driver
could be replaced with template code. In fact, a previousieerof the blocklayer template
comprised a common strategy for processing requests or@heduest queue. Although the
mass storage driver uses the same strategy, an attempt ¢e ther strategy with the original
driver failed. The reason is that the driver relies on infation of individual requests, which
was abstracted away in the template. Further investigationthis matter could yield to better
results, but the overall potential for code reductions @bpbly low.

Another aspect that should be mentioned is that code reubke kernel is already achieved with
low-level drivers, or subsystems, that provide servicesiigh-level drivers. This further limits
the potential of code reuse.

2The template can be found in /drivers/net/pci-skeleton.c

63

Separation of Concerns

The initial motivation behind the template mechanism wasfter a way to separate device-
specific from OS-specific code. With the current design tepsasation can only be achieved to
a minor degree. While the templates take care of mundanegueing tasks such as initializa-
tion of subsystems and driver resources, device driverrpromers still have to possess basic
knowledge about Linux device drivers and the subsystemswioek with. However, instead of
simply copying similar device driver code, templates pdeva cleaner way to reuse code. The
resulting code slightly improves in readability since b# boilerplate code resides in a separate
file.

A cleaner separation between device-specific and OS-gpeoifie is demonstrated by the re-
cently developed driver generator system Termite [Ryzhykle 2009b]. A Termite device
driver specification is divided into three parts, the de\pcetocol specification, the operating
systems specification and the device-class specificatiihd@es not support this kind of divi-
sion, but future extensions could be considered.

5.5 Compiler Complexity

The CiD compiler features roughly 6913 physical sourcesliokcode: 13% of the source code
account for concurrency algorithms, 6% constitute of hamdw/O code and 4% are made up by
the template compiler. The remaining 77% constitute ofipgrdexing, AST node definitions
and building routines, name analysis and (lots of) type kkiedn conclusion, the proposed
language extensions and algorithms were, as expectediceimsglement.

5.6 Limitations

While the proposed language extensions and the CiD comgileraid the programmer in de-
tecting mistakes (or preventing them), the complexityt stilnains. To some degree, the pro-
gramming model can be simplified by freeing the programnmnfchoices which can be made
automatically, such as the correct lock type or deferreckwmechanism. However, correct CiD
code does not mean that a device driver is free from deadlockace conditions, the most
vicious types of bugs. The CiD compiler cannot perform ckegk API constraints, and for
example, there is one non-critical path in the mass storagerdvhich (currently) leads to a
deadlock. Due to the high degree of concurrency, detectinlisflike race conditions and dead-
locks is still very difficult. Also, once the kernel crashalinformation about the program state
is lost, which makes it even more difficult to locate deadsock

It was hoped that templates could simplify the programmihdeavice drivers to some degree,
but the resulting drivers are still tightly coupled with thimux driver model, as the poor code
reuse results show. However, more fleshed-out templatdd gigld to better results.

In conclusion, CiD can only assist the programmer in margatie high complexity of the pro-
gramming model. However, no significant reductions of therall invovled complexity are
likely to be expected with further improvements and extemsi

64

CHAPTER

Related Work

In the last few years, there has been increasing effort treaddhe device driver reliability prob-
lem in the OS research community. In general, two key apemcan be identified. The first,
and more traditional, approach sees the causes of theiligligiooblem in weaknesses of cur-
rent OS and device drivarchitectures The second approach recognizes the roladuages
and their contributions to the quality of device driver cdde

Microkernel architectures are the best-known technigumiilol reliable and fault-tolerant oper-
ating systems. Traditional microkernel systems, howel@not directly address the reliability
of device drivers and assume that they are inherently faMhile this assumption has been
proven true for current device drivers, it may be very wellalidated in the future with new
techniques such as static source code verification and nevaidespecific languages [Ryzhyk
et al., 2009a, Conway and Edwards, 2004, Mérillon et al.92&yzhyk et al., 2009b].

The concept of user-space drivers is not limited to micnoi&kbased architectures. Research
prototypes have shown that monolithic kernels, such as\.ican be accommodated to running
user-space drivers [Renzelmann and Swift, 2009, Lesli¢.,e2@05]. Particularly notable ef-
forts are theDecaf Driversarchitecture and Leslie et al.'s adoption of the Linux kétasupport
user-space drivers.

While user-space drivers have a lot to offer, they do not egklall problems that current de-
vice drivers show. As has already been pointed out in previapters, most general purpose
languages do not reflect special aspects of device drivaiajmwnent very well, or at all. Cru-
cial aspects such as hardware I/0 and communication pristace not part of most languages.
Noteworthy innovations in this area are hardware interféescription languages such Revil
andNDL, which allow the programmer to specify register layoutgjigter 1/0O operations and
their side-effects [Mérillon et al., 2009, Conway and Edi&2004].

LIt is important to note that the distinction between arattitee and (programming) languages is rather arbitrary
and can get blurry. In fact, Hunt et. al demonstrate withrthesearch OS “Singularity” that there is a synergy
between programming languages and operating systemesthit, one aspect shaping the other [Hunt and Larus,
2007]. Nonetheless, due to the complexity of the deviceedrieliability problem, it is helpful to differentiate
between the two aspects.

65

Concurrency related bugs are very likely to be found in devidvers due to the complex pro-
gramming model. Successful attemptssimplify the Linux concurrency model have been
demonstrated: ThBingo architecture demonstrates the benefits of event serializat little
cost in performance [Ryzhyk et al., 2009a].

An orthogonal problem that device driver developers haviade iscollateral evolution The
semantic patcher Coccinelle offers a powerful languagepture complex changes in the driver
codebase with a concise and intuitive syntax [Padioleal,&2G08].

6.1 Device Driver Architectures

User-space Drivers

User-space drivers offer several benefits over kernel siers. The arguably most important
advantage is that user-space drivers can be written witsdh®e tools and programming lan-
guages as all other user-space applications. As a resuilteddrivers can be more easily tested
and debugged with available tools. While there are obvi@issgin productivity, experimen-
tation with already existing programming languages is areged. Another advantage is that
faulty device drivers which are stuck in a deadlock or in #g#l state, can be recovered by
simply restarting the driver process [Herder et al., 2006].

The idea of user-space drivers has also found its way intd.ithex kernel with the user 1/O
(UIO) patch. The motivation behind the patch was to makeetdmprogramming less difficult
and more productive. However, UIO provides only rudimgn&urpport for user-space drivers
and is geared towards less sophisticated embedded devitbdess performance demands than
for example, network interface controllers.

There are two explanations why user space drivers havevegtenly little attention in the ker-
nel community. First, a wide spread myth is that user-spawerd are inherently slow. While it
is true that early microkernel implementation such as Maauh $low user-space drivers due to
poorly designed IPC, modern microkernel architectures sscl 4 have far better performance
[Hartig et al., 1997]. In fact, Leslie et al. have shown thatrolithic kernels such as Linux can
be also accommodated to user space drivers with high peafarenrequirements. Leslie et al.’s
user space architecture is a good example for this. Secdgdation to user space drivers is a
difficult problem due to the enormous size of the existingecbdse. The DecafDrivers research
architecture shows that part of this process can be autdmate

Leslie et al.'s User-Space Architecture

Figure 6.1 shows an overview of Leslie et al.’s user-spackitacture [Leslie et al., 2005].
Device drivers gain access to device registers by mappintipps of physical (I/O) mem-
ory into their address space. The Linux kernel already pies/ithis capability with themap
system call and thedev/ memfile node which represents all available physical memory.
In order to support DMA operations, the system call intexfhas been extended with mapping
services that translate physical addresses into bus addresd services that pin memory re-
gions. Pinning of DMA-mapped memory regions is essentigirteyent memory pages from
being swapped during DMA transfers.

66

read() >
Driver Iprocl/irg/n/irq
¢

Entry points
work *

mmap() descritpors
User space
Kernel space
I/0

space

DMA

space Driver

subsystem IRQ Interface

Figure 6.1: Structure of the user-space driver architedbyrLeslie et al [Leslie et al., 2005].

Interrupts require special treatment because they can lgehandled in kernel-space. In the
proposed architecture, user-space drivers register withtarrupt by calling th@pen function

on the desired entry in thiepr oc/ i r g/ n directory, where: designates the interrupt number.
Once the driver callel ose, the interrupt handler is unregistered. The user-spaserdre-
ceives interrupts by invoking theead system call on the file node. In the kernel, a semaphore
keeps track of the number of occurred interrupts and dearEnveith each read operation. |If
there is no pending interrupt, the driver blocks until theide signals an interrupt which incre-
ments the semaphore.

Communication between the device driver and the kernelaqplerformance) critical part of
the architecture. Requests from the kernel to the deviasedand vice versa are encoded as
message descriptors which identify the operations thag babe performed. The descriptors
are shared between kernel and driver in lock-free circuliffiebs, one for each direction. Both,
kernel and user-space drivers, can directly access theptess without additional overhead.
Leslie et al. have evaluated their architecture with a bibekice driver and a NIC driver, which
both have high performance requirements. The results ararkable: the user-space drivers
performed nearly as well as the kernel space drivers witf prihor processing overhead and
neglectable drops in throughput rates. This shows thathéor, the Linux kernel could be
accommodated to support user-space drivers at neglectadtiein performance considering the
benefits in security and reliability. However, in practitee main disadvantage of the archi-
tecture is that all existing drivers have to be converted extisting driver interfaces have to be
adopted to the proposed message interface.

67

Decaf Drivers

Decaf Drivers is a generic device driver architecture thapsrts the development of user space
device drivers in, conceptually, any programming languagdalike the architecture proposed
by Leslie et al., Decaf Drivers also provides a migratiorhpiiat makes it easier for kernel
developers to convert legacy device drivers into useresgeuers. Figure 6.2 shows an overview
of the Decaf Drivers architecture.

User-level Driver

Decaf
Driver Driver
- Library
Application < > XPC
Stubs
Kernel/User XPC
_ . 7‘; [
Kernel/User XPC

Kernel

v

Driver <« Device
Nucleus

/ Stubs v

Figure 6.2: Decaf Drivers Architecture (adopted from [Relnzann and Swift, 2009]).

A device driver is divided into three parts: a drivaucleus a decaf driverand a driver li-
brary. The nucleus is a kernel module which contains perdoice critical code and makes the
user-level decaf driver compatible with the kernel. Theafleltiver executes in user-space and,
thus, can be written in any language. The driver library amst support functions written in C.
Communication between the decaf driver, the driver libi@mg the nucleus is achieved via ex-
tension procedure calls (XPCs). XPCs enable the transitmn user space to kernel space,
and vice versa, and are also used to allow the decaf drivaltmative functions in the driver
library. XPCs are heavily optimized for run-time performarand for example, avoid unnec-
essary copying of data-structures. XPCs offer five serviceatrol transfers, object transfers,
object sharing and synchronization and stubs. Controbtess emulate procedure call seman-
tics, object transfers marshal and unmarshal data stegt@bject sharing, in conjunction with
synchronization, enable the decaf driver and the nuclesafady share data. Stubs contain code

68

for setting up and calling XPC services.

The tool DriverSlicer is a crucial part of the Decaf Driverstatecture which makes the transi-
tion from kernel-space to user-space drivers easier. TiveiRicer tool is capable of partition-
ing a legacy C driver into code that has to reside in the ngoteuhe decaf driver. In addition,
the tool also generates XPC stubs, but the programmer haswiol@ some annotations for mar-
shaling and unmarshaling kernel data structures.

The Decaf Drivers architecture was evaluated with five degliivers, including network drivers,
a sound driver, a USB 1.0 host controller, and a serial motigerd The decaf drivers were all
written in Java. It was also shown that even for performaswgsitive drivers, such as the E1000
network driver, there were overall minor performance piesl

More interestingly, Renzelmann and Swift observe that dkwace driver code benefits from
high-level features such as exception handling, genexidstrd libraries, object-orientation and,
possibly, garbage collection. However, benefits of garlwadjection have not been fully evalu-
ated because management of shared objects has to be maturadlypy the programmer. Error
handling in Linux device drivers can be improved with exgapthandling. For example, in
the course of rewriting the E1000 NIC driver in Java, Renagimand Swift found 28 cases in
which errors were originally ignored in the legacy code, legiorted as uncaught exceptions by
the Java compiler in the new code. Also, reductions in dreeete size could be achieved with
code inheritance (object-orientation) and the use of Jallaations.

Dingo

Dingo is a device driver architecture that addresses coeaey issues and OS protocol viola-
tions which occur within traditional device driver code fRyk et al., 2009a]. A Dingo driver
consists of two parts: (1) a protocol specification that dsfimessage exchange between a de-
vice driver and the operating system and (2) a C implememtatf the driver that processes the
defined messages. Unlike in a traditional Linux driver, thegd engine serializes all requests
(messages) that are passed to a driver, and therefore jdlurly one code path active at a time.
Verification of the protocol is done during run-time via a mtlcalled “protocol observer”.
In the Dingo model, the operating system and device drivensngunicate vigorts which rep-
resent bidirectional communication endpoints for excliagngnessages. Each port is associated
with a protocol that defines order and timing in which messagay arrive as well as their
contents. Ports, messages and their protocols are dasarvikie a mix of textual and graph-
ical syntax. For example, the port declaration of an USEtieernet driver (presented in the
corresponding paper [Ryzhyk et al., 2009a]), is as follows:
conmponent asi x {
ports:

Li fecycle Ic;

mrror Tiner tiner;

}

According to the component declaration, the Asix etheretroller exports a Lifecycle
port and uses the Timer protocol provided by the OS, as iteticay theri r r or keyword?.

2The complete declaration contains additional ports, beyt Hire not shown in order to keep the example brief.

69

Every protocol consists of a list of messages and a stateinettiat defines how the messages
affect the state of the driver (or device). The message tiefinis defined textually, as the
following code fragment shows:
protocol Lifecycle {
nessages:

in start();

out startConplete();

out startFailed(error_t error);

in stop();

out stopConplete();

i nt unplugged();
}

The corresponding state machine is described with the®tatelanguage, a graphical lan-
guage similar to state charts in UML, as shown in Figure 6tateSransitions are triggered by
receiving or sending messages defined in the protocol. Watkaharts it is possible to decom-
pose states into hierarchies. For example, the superstateect ed consists of three states,
starting,runni ngandst oppi ng, from which a transition to thdi sconnect ed state
is possible.

init

?start

/ connected \

e

starting [5s] IstartFailed @
disconnected [5s]
?unplugged

running

?st
v stop

stopping [5s] IstopComplete
~®)

Figure 6.3: Lifecycle state machine (adopted from [Ryzhiyale 2009a])).

It is the job of the programmer to translate a given deviceégmal into actual code. Dingo
features a customized C preprocessor with specializedandor event (i.e., message) han-
dling.

70

A serious drawback of event-driven models is stack rippsgg(Section 3.3). Because event
handlers may not block, requests that cannot be immediateigled have to be divided among
event handlers, i.e., completion chains. To address thidgm, Dingo offers language-extensions
and compiler support to allow the programmer to write cortigiechains in a sequential way.
For example, asynchronous function calls can be handlddth&tCALL as follows:

/* Repeatedly read froma device register x/
do {
[+ Wait 10 mlliseconds, w thout blocking */
CALL (tinmeout, (10, ¬if), notif);

/* read status register =*/
} while (/* condition */)

The CALL macro calls an asynchronous timer service. The demtakes care of saving
the state, i.e., the local function stack and the instracgointer. Upon completion, the state
is restored, and execution continues after the CALL statem@ithout this macro, the above
code would significantly increase in complexity and deaédageadability. This is because the
timeout event would have to be handled in a different eventiles, and the loop would have to
be replaced with a counter, indicating the current iteresitate.

Dingo also offers additional coordination statements. &@mple, messages that are defined
in the protocol can be received and sent with vl T andEM T macros, respectively. For
example,AWAI T(di sconnect ed) would suspend the current execution trace, waiting for
the disconnect event.

The idea of protocols has also been introduced as part ofitiggil8rity operating system [Hunt
and Larus, 2007]. The concepts are quite similar: In Singylanessage protocols are described
with channel contractga channel is just another name for a port), which define bo#ssages
for exchange, and a state machine. Unlike Dingo, Singylases static verification to ensure
protocol correctness.

Active Device Drivers

The Active Device Drivers architecture is a recent contidouby Ryzhyk et al. that introduces
the distinction between passive and active drivers [Ryztyd., 2010].

In a passive device driver architecture like in Linux, the @Sses requests to device drivers by
concurrent invocation of the drivers’ entry points. If thevite driver is busy processing other
requests, it still has to cope with more concurrent requesising in. In contrast, an active
driver is a sequential program with its own thread of corsurodl can determine on its own when
it is ready to process the next type of request.

The communication model for an active driver is as followsgRests are put into shared mem-
ory locations called mailboxes. Every mailbox correspatads particular type of request (such
as an I/O request or a configuration request) and may contambétrary number of messages
of the same type. If an active driver is ready to process agsgthen it issues a blocking read
operation on the corresponding mailbox. Thus, requestseofame type argerialized When

a driver has finished a request, it puts a response messaghértorresponding reply mailbox.

71

Because devices may have multiple, independent commioricgaths, such as the send and
transmit channels of a NIC, the Active Drivers also supportstithreaded request processing.
To this end, an active driver may creatsoperative domains which threads that belong to the
same domain are scheduled cooperatively. Threads froereliff domains may run in parallel.

Discussion

Architectural modifications such as user-space driversadtadations of the concurrency model
as in Dingo show promising potential to prevent frequenttain device drivers and to make
driver programming more productive.

User-space Drivers. Theoretically, the concept of user-space drivers is sapéoitraditional
kernel-space drivers despite the performance overhe@itie free choice of development tools
and the safer programming environment allow for signifiogains in productivity and show
potential to increase the reliability of device driverse&ily, compiler enhancements to fit the
kernel programming model (as demonstrated with CiD), camaach the flexibility of user-
space drivers. It must be stressed, however, that usee-sip@ers do not solve all aspects of the
device driver reliability problem but “merely” provide aligble platform to build on. Support
for crucial aspects such as hardware 1/O, concurrency avidedprotocols is complementary
to user-space drivers and necessary to further increasgutiity of device driver code. CiD
shows potential to reduce driver faults with additional sistency checks for hardware 1/0O and
concurrency.

Dingo and Active Device Drivers. The event-driven approach in Dingo relieves the program-
mer from the complex multithreaded model and also addretbseproblem of stack ripping.
Similarly, the active device drivers architecture alsoumxb the complexity of multithreaded
drivers with its new communication model. With Dingo or AgtiDevice Drivers, programmers
do not have to worry about locking and intertwined driverax@n paths. In contrast to Dingo
and Active Device Drivers, CiD retains the multi-threadeshaurrency model but provides a
safety net through static compiler checks. Detection of @nditions, inference of lock types
and illegal function calls (that lead to deadlocks), agsistprogrammer in generating correct
concurrent driver code. Therefore, device drivers can btenrin the classical multithreaded
model with some reassurance, but the complex program steustill remains.

An important feature that Dingo has to offer is the verifioatdf the OS to driver interaction.
Dingo’s protocol specification capability is not to be casdd with CiD’s protocol construct.
CiD protocols are solely used improve the accuracy of digigcace conditions in the data path
of a driver. Unlike Dingo, the CiD compiler cannot verify He driver behaves correctly (with
respect to the device and OS protocols). Therefore, futersions of CiD should incorporate
more powerful protocols. Because of the multithreaded medefication will be more difficult
to implement than in Dingo.

The Migration Problem. Any technology or paradigm that replaces a previous tectenfgces
the problem of migration. In the case of Linux device driyéngs problem is particularly serious

3According to Herder, the performance gap between kerrmtesmnd user-space drivers might even narrow
further with hardware support for message passing [He20d10]

72

because of the enormous size of the code base.

Although the development of user-space drivers can be esgkdode generation tools like
DriverSlicer, there is still a lot of manual labor involveBriver interfaces have to be adopted
and drivers have to be written in new languages. While Dingwides some sort of plug-in
framework for the new architecture, leaving legacy drivemtouched, it requires the transition
to an event-driven model. However, the changes would beldéss-intensive than for user-
space drivers.

There are two possible scenarios in which new architectooedd be accommodated to the
Linux kernel and its drivers. In the first scenario, legacivehs are left untouched and new
drivers are written with the new architecture. In the secatghario, legacy drivers are adopted
to the new architecture. None of the two scenarios seemdhigr since either legacy code
has to be additionally maintained (old drivers should &thefit from kernel innovations), or
the entire driver code base has to be converted eventuatigsi@ering that driver developers
are already busy keeping up with new hardware, migratiomligely to happen until there are
more powerful driver code generators available. Also, thasdition to a new paradigm poses
unknown risks not readily to be taken by pragmatic kernektimers.

While legacy driver code has to be converted into CiD as wiedl,changes are less labor inten-
sive since no architectural modifications are required amas{ importantly) the programming
paradigm stays the same. Thus, CiD provides a smootheittoanthan any other of the pro-
posed architecture.

6.2 Domain-specific Languages

Deuvil

Devil is domain-specific language for describing the hamw#O interface of a register-based
device [Mérillon et al., 2009]. Listing 6.2 shows a devil sifieation for a serial mouse which
will be explained in the course of this section.

Every Devil specification is based on three abstractigusts registersanddevice variables
Ports unify port-mapped and memory-mapped 1/O and enaliferomcommunication with a
device. Device variables form the visible interface of aide\{in object-oriented terminology,
they are comparable to getter- and setter-methods) anefned with Devil'sregisters compa-
rable to private variables of a class, to access individegisters of a device. For each variable,
the Devil compiler generates a native 1/O function that camoked in a device driver.

The first line in Listing 6.2 declares thaort variablebase which is used to derive the sig-
nature register, configuration register, interrupt regiand the index register of the device. The
device register layout consists of 4 banks, each of thermglt&inits in size, denoted withi t [8]
port @ {0..3}. Line 4 declares the signature registrg r eg, which occupies the sec-
ond register bankb@ase@1). The corresponding variabkei gnat ur e encapsulates access
to this register by specifying three constraints, indidaig the keywordvol atil e,write
t ri gger and the type constraimtnt (8) .

The keywordvol at i | e indicates that two successive reads to the device signedgister
may Yield two different results. This information is impamt for the compiler, because read

73

Listing 6.1: Devil specification for the logitech busmougskén from [Mérillon et al., 2009])

devi ce | ogitech_busnmouse (base : bit[8] port @{0..3})
{
/1 Signature register (SR
register sig reg = base @1 : bit[8];
vari able signature = sig_reg, volatile, wite trigger : int(8);

/1 Configuration register (CR)
register cr = wite base @3, nmask '1001000." : bit[8];
variable config = cr[0] : { CONFIGURATION => '1', DEFAULT_MODE => '0’ };

[l Interrupt register
register interrupt_reg = wite base @2, mask '000.0000" : bit[8];
variable interrupt = interrupt_reg[4] : { ENABLE => 0, DI SABLE => "1" };

/1 1 ndex register
register index_reg = wite base @2, mask ’'1..00000" : bit[8];

private variable index = index_reg[6..5] : int(2);

register x_low = read base @O0, pre {index = 0}, mask "**xx_. . ." : bit[8];
regi ster x_high = read base @0, pre {index = 1}, mask "**xx.. ..’ : bit[8];
register y_low = read base @0, pre {index = 2}, mask "**xx...." : bit[8];
register y_high = read base @0, pre {index = 3}, mask "...x...." : bit[8];

structure nouse_state = {

variable dx = x_high[3..0] # x_low3..0], volatile : signed int(8);
variable dy = y_high[3..0] # y_low3..0], volatile : signed int(8);
variable buttons = y_high[7..5], volatile : int(3);

b

operations may be cached for performance reasons. The kitywot e tri gger indicates
that writing to the register induces side-effects on thetrodler. Similarly, r ead tri gger
would indicate side-effects after a read operation. Rm#ike type of the variable is constrained
to an 8-bit integer.

The configuration register is located at memory bank thrdém dontents of the device register
are constrained with the bit patterri00100. * . All bits of this register have a fixed value
(being either 1 or 0), however, the first bit can be of an aabjtivalue, as indicated by a dot
"' . Asterisks {) can be used to specify bit positions that should be extafttan a bit
vector. Lines 19-22 make extensive use of bit masks. Thisevi further constrained in the
corresponding variable definitiazonf i g, which expresses that bit @1([0]) can be either set
to CONFI GURATI ONor DEFAULT_MODE, which are both part of a type-safe enumeration.
Access to registers may be also predicategiaactions(see lines 19-22). Some device designs
may use the same device memory location to represent diffezgisters. According to the devil
specification, the logitech busmouse uses the first redistgk to represent x and y coordinates.

74

The value of the index register determines which coordigataponent gets stored in the first
register bank. For example, before accessing registéiow, index is set to 0. Variables can
be grouped together to form a structure (see line 24). Upaditg of the structure, the corre-
sponding variables are loaded all at once.

Based on the detailed specification, the Devil compiler jzabde to perform a series of con-
sistency checks which a C compiler cannot perform. For ekantipe Devil compiler ensures
statically that registers do not overlap (like the CiD colepi If the programmer wishes, the
Devil compiler also generates run-time checks. For ingawhen writing a non-constant value
to a variable, an optional run-time check verifies that tize 8 within the bounds of the corre-
sponding type.

In conclusion, Devil assists the programmer in generatimgennobust code. In fact, Mérillon
found that the probability of undetected errors is 1.6 tottigher in C drivers than in Devil-
based drivers [Mérillon et al., 2009].

NDL

Like Devil, NDL allows the description of device registeytats. However, NDL offers addi-
tional features that simplify device driver developmend &even capable of generating com-
plete (network) device drivers from code templates.
Every NDL specification consists of three elements: an fater description, a state machine
and a set of driver functions. Device register descriptiamspart of a device interface declara-
tion which may inherit other interfaces and template infation. Listing 6.2 shows a fragment
of the NE2000 NIC NDL driver, adopted from the most recent NiBlease [Conway, 2010].
The first line declares the device and inherits the code i@ gind interface functions from
the built-in NetworkDevice declaration. The@port s section in the following line defines the
command register of the NE2000 controller. Wteop, st art andt r ansni t each occupy
one bit and trigger a side-effect upon write access (asatelicby the r i gger keyword). The
dmaSt at e compound field occupies three bits and defines constanteribatle different states
in the DMA engine.
The states of the NIC are defined after thepor t s declaration. Every state can be associated
with a list of actions that are performed at the transitiowtluding transitions to other states.
States that are mutually exclusive are connected with| {heoperator. In the example, the
controller can be either in the start or stopped staigin one of the three DMA states.
Every NDL driver consists of a series of functions, in whitie tdevice specification can be
used to program the driver. To this end, NDL comprises a s@dike subset with control
flow constructs, arbitrary-sized integers, arrays andjt@rithmetic. The source code of the
NE2000 driver also reveals that there are synchronizatiaterments which are not mentioned
in the original publication, such as waiting for a deviceistgr to change its value. Also, similar
to CiD's synchr oni zed statementcri ti cal blocks are used to mark critical sections in
device driver code.
An interesting result is that the NDL driver for the NE200Gs lanly half of the size than the
Linux driver. On the one hand, this is because NDL code is rese than Devil, one the other
hand, code reductions can be also achieved with templadesdhtain boilerplate code.

75

Listing 6.2: Excerpt of NE2000 NDL interface (adopted froBohway, 2010])

devi ce ne2k : NetworkDevice {
i oports {
0x00: /* At offset 0x00 =/
command = {
stop : trigger except O,
start : trigger except O,
transmt trigger except O,
dnmaSt at e {
READI NG = #001
WRI TING = #010
SENDI NG = #011
DI SABLED = #1*+*
},
regi sterPage : int{0..2}
1
[+ State machi ne */
state STOPPED ({
got o DVA DI SABLED ;
stop = true ;
}
I
STARTED { start = true ; }
state DVA DI SABLED { dnaState = DI SABLED ; }
[
DMA_READI NG { goto STARTED ; dnaState = READING ; }
[
DMA WRI TING { goto STARTED ; dmaState = WRITING ; }
}
Coccinelle

Coccinelle addresses the problem of collateral evolutiomievice driver code (see Section 3.3
in Chapter 3) and has been successfully used to create gnafrleernel patches [Muller, 2010].
Coccinelle enables the programmer to specify C code changedeclarative language called
the semantic patch language (SmPL). The syntax of SmPL tdeerthat of the well-known
GNU patch tool [Free Software Foundation, 2010], but is farenpowerful because it also
reflects the structure of C code. Listing 6.3 shows an exdeopt an official Coccinelle patch
that replaces direct access to the driver-specific data(fieldver _dat a) of a generic device
handle §t ruct devi ce) with newly introduced getter and setter functions.

The patch consists of two matching and transformatigdas for reading from and writing
to the field, respectively. The beginning of each rule caorstas header (delimited with the
“@@’ 'characters) followed by a list ahetavariabledeclarations. The types of the variables are
essentially constraints to the pattern matcher. In the pl@mariablekE represents an arbitrary
C expression andl denotes the name of a valid C type name. Similar to GNU paitobs khat

76

Listing 6.3: A simple Coccinelle patch that inserts a newllyoduced getter function

@@

struct device *dev;
expression E

type T;

@

- dev->driver_data = (TE
+ dev_set _drvdat a(dev, E)

@

struct device *dev;
type T,

@

- (T)dev->driver_data
+ dev_get _drvdat a(dev)

should be added and removed are prefixed with the minus asdign, respectively.

Pattern matching rules can be also combined to express rongex code changes as the patch
presented in Listing 6.4 shows. The purpose of the patchrispiace access to the private data
field pri v of a NIC handlenet _devi ce with the getter functiomet dev_pri v. Unlike

the previous example, the usage of the function is moreicesirthanget _dr v_dat a, since

it can be only applied to device handles that have been &idaaith eitheral | oc_net dev,

al | oc_etherdevoral | oc_trdev. The purpose of the first rule is to match these handles.
The third rule performs the actual replacement, but onlgeéffirst rule matches. More precisely,
the match is constrained with the variaBlevhich isinheritedfrom the first rule.

Listing 6.4: Metavariables and rule dependencies in Cadlein

@rulel @
type T,
struct net_devi ce *dev;

@@

dev = (alloc_netdev | alloc_etherdev | alloc_trdev)
(sizeof (T), ...)

@rul e2 depends on rulel @
struct net_devi ce xdev;
type rulel. T;

@

- (T+) dev->priv
+ netdev_priv(dev)

77

When patching a large code base, the fact that the same catioputan be expressed with
different syntactical variations complicates the creatid accurate patches. For example, a
NULL pointer condition can be expressed with an equality eeshe short-hand operatbr To
address this problem, SmPL allows the programmer to albbstyatactic and control-flow vari-
ations into so-calledsomorphismsAn isomorphism expresses semantical equality for differe
syntactical constructs. For example, the isomorphismhieaforementioned NULL pointer test
can be specified as follows:

@@

expression X;

@@
X == NULL <=> NULL == X <=> I X

With isomorphisms, patch authors can simply choose whatgwdax they find appropriate
while Coccinelle takes care of deriving the specified syitatalternatives. This makes the
resulting patches more readable and more accurate.
The following example shows that isomorphism can be quitegpful and even capture control-
flow variations:
@neg_if @
expression X;

statement S1, S2;

@@
if (X) Sl else S2 =>if (!X) S2 else S1

The Coccinelle distribution already comes with a fairly goehensive set of isomorphism,
allowing the patch author to focus on the specifics of a patithomt distraction to mundane
details.

While Coccinelle has been developed to address the probéthshanging device driver in-
terfaces, its program matching capabilities can be alsd ttsdetect and fix source code bugs.
The official website has a quite impressive showcase of eletacting patches, for example,
discovering null pointer dereferences and resource deditm errors [Muller, 2010].

Discussion

Devil and NDL. Devil and NDL demonstrate the potential for fault preventend fault de-
tection in low-level hardware code through low-level codmeration and more rigorous type
checks. CiD’s register file construct has been inspired gdHanguages. However, in the
current state, CiD lacks advanced features to describe pwrplex device interfaces. For
example, Devil allows the programmer to specify pre- andgmi®ns for accessing registers.
These features should be incorporated into CiD. Like NDID G$es templates to generate de-
vice driver code. Judging from the latest NDL release, theptate languages of NDL and CiD
are equally expressive. To exploit more code reuse opptgsinCiD’s template language could
be extended with conditional and control-flow statementae Problem with domain-specific
languages like NDL or Devil is that they make migration mucbrendifficult than new driver
architectures. Unlike architectural modifications, hoaremew languages do not change legacy
drivers.

Coccinelle.Code reuse and collateral evolution are an orthogonal ibsielevice drivers have

78

to face. CiD uses templates to loosen the dependency bettex@e drivers and kernel inter-
nals, but also to support code reuse. In addition, the bustipport for synchronization and
deferred work allows for some resilience to code changesci@elle can be considered as a
powerful complementary approach that allows for more firerged changes than code tem-
plates and language extensions can provide.

One aspect that has to be addressed, however, is more ftgxtildriver evolution. Currently,
the compiler infrastructure does not support multiple tigpand code generator backends for
different kernel versions. This should be considered farriversions.

6.3 Other Technologies

This chapter provided only a small selection of recent imtions and technologies in the area
of device driver development. Other important approachestatic verification, fault isolation
techniques and driver synthesis.

Static Verification

An example for static verification is Microsoft’s Static er Verifier (SDV) tool [Microsoft,
2011]. SDV analyses the code of a Windows driver and checksiblates any of the driver
API rules. Recently, similar work has been done by Witkowaskal. with their Linux driver
verification tool DDVerify [Witkowski et al., 2007]. Both tws rely on counter-example-guided
abstraction (CEGAR), a technique which reports countengrtes that expose bad behavior in
program (device driver) code. In contrast, the CiD compilerifies a predefined set of rules
and does not offer the flexibility to verify arbitrary API catmaints. Also, the compiler does not
provide counter examples, which could be considered faréuextensions.

However, static verification techniques could profit fromdaage extensions that increase the
level of abstraction and thus make rule checking simplerekample, the locks in a CiD driver
are always balanced and of the correct type.

Fault Isolation

In Linux, device drivers are part of the kernel and have themtal to crash the entire system
since there is no protection between the (faulty) drivers @amaffected parts of the kernel. The
purpose of fault isolation is to contain faults in the cop@sding subsystems, i.e., the drivers,
where they can only do limited harm. Fault isolation can b@eaed statically and/or during
run-time. Safe kernel programming languages are an exaaipgéatic fault isolation. The
SPIN operating system relies on a safe subset of Modula-tnpieinentation for kernel ex-
tensions. Like Linux kernel modules, these extensions ealinked during run-time into the
kernel. However, unlike C, the subset features pointex-saéting, language-based isolation of
untrusted code and a secure dynamic linking. Similar to @B safe Modula-3 subset features
a procedure modifier that indicates whether an operatiorbedkilled, which is important for
interrupt handling in SPIN. Another example is Sing#, arersion of the C# programming lan-
guage in which the Singularity operating system has beeteimgnted [Hunt and Larus, 2007].
Unlike in conventional operating systems, processes afatézl by the memory-safe language

79

and not hardware protection mechanisms like MMUs.

Run-time fault isolation is achieved by architectural meavicrokernel architectures success-
fully build on the principle of fault isolation. A recent sty by Herder et al., demonstrates the
robustness of the Minix microkernel operating system aidaulty device drivers [Herder et al.,
2009]. It is important to note that run-time fault-isolatican be also achieved with the Linux
kernel, as the Nooks architecture demonstrates [Swift €2@D2]. Nooks introduces protection
domains between the kernel and drivers, shielding them &wors such as memory corruption.
Regarding to the work presented in this thesis, fault ismlatan be considered as a powerful
and probably necessary complementary approach. Evengbidaye-extensions like CiD can
prevent certain mistakes, there is no guarantee that a Q#rdworks correctly. Also, static
verification may not be able to detect all driver bugs. Anpitencern is that most drivers do
not deal with hardware faults properly (or at all), and, feample, could be stuck in an endless
loop when polling a faulty device. Therefore, fault isatetishould be also considered for the
Linux kernel.

Driver Synthesis

The goal of driver synthesis is to automatically generatécgedriver code from formal speci-
fications, thus ensuring "correctness by construction“eéent contribution to driver synthesis
is Termite [Ryzhyk et al., 2009b], a tool which provides aacleseparation between OS-specific
and device-specific code. Based on a device-class spedoifictiie Termite engine synthesizes
driver code from these specifications. Thus, when portingwéce driver to a different OS ar-
chitecture, only the OS specification has to be changed. ileeapecifications are based on an
event-driven model.

Another approach has been presented by Bombieri et al., wtwonatically generate simple
device drivers based on register-transfer logic (RTL)oesthes [Bombieri et al., 2009].

Driver synthesis is a promising approach that could soleed@wvice driver reliability problem.
In order to make driver synthesis possible, the formal gawéen devices and operating system
has to be bridged with formal languages. In order to narra@vgdp, hardware manufacturers
and OS developers have to work closely together and devestanagardized formal language
for describing device and driver models. With the advent oferexpressive programming and
specification languages for device and driver developmengap can be narrowed further. It
might be tempting to regard CiD as a temporary solution/ éuity functional driver generators
are available. However, driver generators can benefit fiomplgied programming models (or
more powerful compilers). For example, protecting criteections in CiD is simply a matter of
placingsynchr oni zed blocks, which simplifies code generation.

80

CHAPTER

Conclusion

The central question of this thesis was how device drivegfanmming can be made more ro-
bust. Unlike other research approaches, this thesis iga¢stl and demonstrated possibilities to
improve the current driver programming model without retioinary changes. The prototype

language CiD shows promise and demonstrates how this cachimved in principle.

However, there is much room for improvement and, despiteffatt, this thesis just scratched

the surface. Section 7.2 shows how the work can be continued.

7.1 Brief Summary and Review of Results
The current Linux programming model lacks support for:

e Concurrency and synchronization
e Hardware 1/O

e Code reuse and separation of concerns

Concurrency faults, i.e., race conditions and deadlodkesyery common in device driver
code: A device driver has to deal with multiple requests atghme time and synchronize
concurrent activities. In addition, concurrent driver edths to satisfy concurrency model con-
straints such as never calling a blocking function in atoaminterrupt context. Until now, the
programmer had to verify these rules by hand. With CiD, it besn successfully demonstrated
that the concurrency model can be incorporated into a C dempith only minor extensions
to the programming language, i.e., concurrency protoyachronization blocks and func-
tion context modifiers. As demonstrated with two convertadeds, the CiD compiler always
chooses the correct lock type, eliminating one potentiatedor a deadlock. Also, the compiler
ensures that all blocking operations are safe in the cuesasttution trace, further mitigating the
potential for deadlocks. Finally, race conditions in théaeffow of the converted device drivers
can be detected with a false positive rate of 6% to 21%.

81

Hardware 1/O is a particularly error-prone aspect of dewdger code since minor mistakes
such as swapping two bits cause the driver to malfunctionaaedindetected by the compiler.
CiD’s hardware /O features assist the programmer in wgitiorrect low-level code with the
generation of bit manipulation code, automatic byte oraewersions and consistency checks
on data layouts. However, compared to more elaborate agipeeauch as NDL and Devil, CiD
provides only a small hardware I/O kernel with need for optation. In the converted NIC
driver, there is a factor of 1.5 increase on the number oftegi/O operations.

An important aspect that the current model does not supp@eparation of concerns and fine
grained code reuse. As a result, device driver code incl@@specific and device-specific
code, leading to hard to maintain code [Padioleau et al.§R0he Termite project shows that
separating those two aspects is possible [Ryzhyk et al91800with CiD, a code template
mechanism was used capture and reuse OS-specific code. fdtattee source code size of the
NIC driver could be reduced by about 14%, but no code redustivere achieved for the mass
storage driver. Also, a clean separation between OS-spacifi device-specific code could not
be achieved. NDL and Termite demonstrate that this is féashbt at a change in the program-
ming paradigm.

Another important aspect is that separation of concerngyigdkaddressing OS and device pro-
tocol violations. For example, in CiD, OS protocol consitaican be captured in templates or
within the compiler as rules to the static concurrency aialyHowever, CiD does not offer
the flexibility to check API rule violations such as DDVerifywitkowski et al., 2007]. More
importantly, CiD does not offer a way to specify the openatiof a device in a clean way such
as Dingo [Ryzhyk et al., 2009a].

Despite CiD’s limitations, | believe that the reliabilityf device drivers can be improved with
the proposed language extensions. Investigations orrdagiiability show that simple mistakes
(such as calling a blocking function in atomic context) argssingly common [Ryzhyk et al.,
2009a, Padioleau et al., 2006]. With CiD these faults aregmted by design. Also, compared
to other (and more elaborate) approaches, the transition € to CiD is seamless and can be
automated with Coccinelle.

7.2 Future Directions

The next steps that should be taken are to incorporate tipged language elements and the
compiler modifications into GCC and to patch the driver tréih the extensions. A good start-
ing point are CiD’s function modifiers, which, together witsimple static call graph analysis,
have the potential to prevent many deadlocks. Also, ctiieations and deferred code in legacy
drivers could be replaced with synchronized and deferredksl, respectively. Coccinelle could
be used to perform these conversions automatically onyedmdce driver code.

Also, the existing compiler infrastructure should be fertimaintained because it provides an
easy and fast way to test new ideas for language refinemethiadalitions.

82

Language Improvements and Additions

Current additions to the language should focus on improttiegcore elements. What follows
is a list for the most important improvements that should laelenin the future. The individual
tasks are ranked by priority in descending order.

Hardware 1/0

1.

Support register group aliases to allow reading or vgitmall registers in the group with
one statement.

Reduce the number of redundant read-modify-write ojmgraby using the results of the
concurrency analysis.

Support preactions and postactions for register aceesse
Support overlay registers and bank switching

Support inheritance of descriptor layouts.

Concurrency and Synchronization

1.

Make the syntax of protocols less cumbersome and verboseding a simple algebra
for combining and reusing entry point lists. Also, suppaerarchic composition of states
to reduce typing amount.

Add first-class citizens for coordination, i.e., comjges and wait-queues.

Add named synchronization blocks to override automatikihg instantiation (might be
useful for shared locks, e.g., for block devices).

. Add full support for closures (as demonstrated by defiewerk) for asynchronous func-

tions.

Add “deferred” function modifier to reduce the number ohgeted deferred work in-
stances.

. Evaluate elements from data-flow oriented languagesnpl#y drivers for message-

based devices.

Templates

1.

2.
3.

Improve current templates to yield better results forecaelise. Add device-independent
logic to the NIC template to demonstrate feasibility.

Add support for different template versions to ensurékbacds compatibility.

Extend the template language with conditional statesnantl loops to make template
code more flexible.

83

Compiler Improvements

Although the current compiler implementation is simple averall easy to maintain, more
effort has to be put into making the analyses more resil@iininor) language changes. Thus,
current efforts should focus on improving the current cderparchitecture. Following steps
should be taken in the future:

1. Add a simplified intermediate language to make analyse&s nagilient to language changes.
2. Add more unit tests and test cases.
3. Document dependencies between analyses and whiclutgtritihey calculate.

4. Integrate a generic tree matcher like BURG into the coenpd simplify the atomic ex-
pressions and hardware I/O generator.

7.3 Lessons Learned

The initial goal of this thesis was to design an extensibimaa specific language for the auto-
matic generation of Linux device drivers. Unsurprisinghis has proven to be an impossible en-
deavor because the prerequisite for such a language isféefidgied domain model of computer
hardware. Such a model could not be engineered, partly beazuthe intimidating amount of
hardware specifications and different technologies, amtllypdue to the lack of experience in
the field. The overwhelming complexity of the Linux kernelsnget another difficult obstacle
that had to be faced.

The idea for simple language extensions as proposed in Gilbé&an developed quite early in
the course of this work. At the beginning it seemed too ttitoebe seriously considered. How-
ever, as time was passing by, compromises had to be madetulisstout, it is worth to pursue
even simple ideas and to think about them thoroughly.

Writing the compiler was another valuable experience. &hewe been two attempts. The first
attempt was made with the compiler generator system Elij&fsity of Colorado at Boulder,
2011]. While the generator features a comprehensive sebwérbul tools and specification
languages, | came to the conclusion that it is difficult to kvawth, especially for newcomers
that experiment with language design. The second attentphtRiY was an overall pleasant
experience because it enabled me to write the compiler imdi# programming paradigm.
Undoubtedly, the most challenging aspect of writing a cdenpé to ensure completeness of all
analyses. Even with languages like CiD that have small anglsigrammars, it can be difficult
to foresee every possible way a language construct can déruagrogram. While today’s tools
and programming languages allow quick prototyping of a dempensuring completeness and
correctness of all analyses is the real difficult part.

Most importantly, writing kernel code has often proven toabieustrating but also a rewarding
experience. Writing kernel code takes a lot of disciplinat ils worth obtaining to be prepared
for future challenges.

84

7.4 Compiler Availability

The CiD compiler and the driver files are hosted as a Sourgeforoject and can be obtained at
http://sourceforge. net/ projects/cdrivers. For verification purposes, the dis-

tribution includes a snapshdthesi s. t ar, of the compiler and driver files which were used
to obtain the experimental data presented in Chapter Shéwuiriformation on the compiler and

latest updates can be found on the project website.

Contributions are very welcome!

85

Bibliography

[Adya et al., 2002] Adya, A., Howell, J., Theimer, M., BolgskW. J., and Douceur, J. R.
(2002). Cooperative Task Management Without Manual Staekddement. IiProceed-
ings of the General Track: the 2002 USENIX Annual Technicaif€ence (USENIX-02)
pages 289-302.

[Axelson, 2010] Axelson, J. (2010). USB Mass Storage DeWoeblems. Available online:
http://lvr.com/device_errors.htm.

[Beazley, 2010] Beazley, D. (2010). PLY: Python-Lex-Yacc. Available online:
http://dabeaz.com/ply/.

[Bellard, 2011] Bellard, F. (2011). QEMU: open source pssm emulator. Available online:
http://www.gemu.org.

[Bombieri et al., 2009] Bombieri, N., Fummi, F., Pravade@i., and Vinco, S. (2009). Correct-
by-construction generation of device drivers based omsthienches. IDesign, Automation
and Test in Europe, DATE 200pages 1500-1505.

[Bovet and Cesati, 2005] Bovet, D. P. and Cesati, M. (200B)derstanding the Linux Kernel,
3rd Edition O’Reilly Media.

[Chou et al., 2001] Chou, A., Yang, J., Chelf, B., Hallem,&d Engler, D. (2001). An Empir-
ical Study of Operating System Errors. In Ganger, G., edRavceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP#0lLime 35, 5 0ACM SIGOPS Op-
erating Systems Reviepages 73-88.

[Conway, 2010] Conway, C. L. (2010). NDL: The Network Devlcenguage, official website.
Available online: http://cs.nyu.edu/ cconway/ndl.

[Conway and Edwards, 2004] Conway, C. L. and Edwards, S. 8042 NDL: A Domain-
Specific Language for Device DriverACM SIGPLAN Notices39(7):30-36.

[Cooperstein, 2010] Cooperstein, J. (2010)iting Linux Device Drivers: A Guide With Exer-
cises

[Dharm, 2010] Dharm, M. (2010). Observed USB Mass StoraggetaDeviations from
the Published Specification. Available online: http://@yed-alien.net/ mdharm/linux-
usb/target_offenses.txt.

87

[Eklektix, 2010] Eklektix, I. (2010). Linux Weekly News. Ailable online: http://lwn.net.

[Free Software Foundation, 2010] Free Software Foundq20n0). GNU Patch. Available
online: http://savannah.gnu.org/projects/patch/.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., arg$idis, J. (1995). The Visitor
Pattern. IrDesign Patterns. Elements of Reusable Object-Orientav&@f pages 331-344.
Addison-Wesley.

[Hartig et al., 1997] Hartig, H., Hohmuth, M., Liedtke, Jci®nberg, S., and Wolter, J. (1997).
The Performance ofi-Kernel-based Systems. Iroceedings of the 16th Symposium on
Operating Systems Principles (SOSP;9%0lume 31,5 ofOperating Systems Revigpages
66—77. ACM Press.

[Herder, 2010] Herder, J. N. (201@uilding A Dependable Operating System: Fault Tolerance
in Minix 3. Vrije University Amsterdam.

[Herder et al., 2009] Herder, J. N., Bos, H., Gras, B., HoghW®., and Tanenbaum, A. S.
(2009). Fault Isolation for Device Drivers. IEEE/IFIP International Conference on De-
pendable Systems and Netwonages 33—42.

[Herder et al., 2006] Herder, J. N., Bos, H., and Tanenbaum$S.A(2006). A Lightweight
Method for Building Reliable Operating Systems Despitedlinble Device Drivers. Tech-
nical Report IR-CS-018, Department of Computer Sciencge \Universiteit.

[Hsieh et al., 1995] Hsieh, W., Fiuczynski, M., Garrett, C, Bavage, S., Becker, D., and Ber-
shad, B. N. (1995). Language Support for Extensible Opegeystems. Technical Report
TR-95-11-02, University of Washington, Department of Conep Science and Engineering.

[Hunt and Larus, 2007] Hunt, G. C. and Larus, J. R. (2007)g&arity: Rethinking the Soft-
ware stack.Operating Systems Revig$i (2):37-49.

[Intel, Corp., 2009] Intel, Corp. (2009). PCI/PCI-X Familyof Gigabit
Ethernet Controllers Software Developer's Manual. Aldzlda online:
http://download.intel.com/design/network/manuals&42 GBe_SDM.pdf.

[Jonathan Corbet and Kroah-Hartman, 2005] Jonathan GotheR. and Kroah-Hartman, G.
(2005). Linux Device Drivers, Third EditionO’Reilly Media.

[Kadav et al., 2009] Kadav, A., Renzelmann, M. J., and SwiftM. (2009). Tolerating hard-
ware device failures in software. FProceedings of the 22nd ACM Symposium on Operating
Systems Principles 200pages 59-72.

[Kroah-Hartman et al., 2009] Kroah-Hartman, G., Corbetadd McPherson, A. (2009). Linux
Kernel Development: How Fast it is Going, Who is Doing It, Whaey are Doing, and Who
is Sponsoring It. Linux Foundation.

88

[Landley, 2008] Landley, R. (2008). Where Linux Kernel Downtation Hides. IfProceed-
ings of the Linux Symposiymwolume 2, pages 7-19.

[Leslie et al., 2005] Leslie, B., Chubb, P., Fitzroy-Dale, 86tz, S., Gray, C., Macpherson, L.,
Potts, D., Shen, Y.-T., Elphinstone, K., and Heiser, G. 8J00Jser-Level Device Drivers:
Achieved Performancel. Comput. Sci. Techn@0(5):654—664.

[Lietal., 2004] Li, Z.,Lu, S., Myagmar, S., and Zhou, Y. (Z00CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System CodeSl, pages 289-302.

[Mérillon et al., 2009] Mérillon, F., Réveillere, L., CoriseC., Marlet, R., and Muller, G.
(2009). Devil: An IDL for Hardware Programming.

[Microsoft, 2011] Microsoft, C. (2011). SDV: Static Driveverifier. Available online:
http://msdn.microsoft.com/en-us/library/ff552808

[Muller, 2010] Muller, G. (2010). Coccinelle, official welbs. Available online:
http://coccinelle.lip6.fr.

[Padioleau et al., 2008] Padioleau, Y., Hansen, R. R., Uadaland Muller, G. (2008). Docu-
menting and Automating Collateral Evolutions in Linux DewiDrivers. InProceedings of
the EuroSys 2008 Conferengmages 247-260. ACM.

[Padioleau et al., 2006] Padioleau, Y., Lawall, J. L., andli&tu G. (2006). Understanding
Collateral Evolution in Linux Device Drivers. IBuroSyspages 59-71.

[Realtek, 2002] Realtek, R. S. C. (2002). Realtek 3.3V Qinghip fast Ethernet Controller
with Power Management. RTL8139C(L).

[Redpill Linpro AS, 2010] Redpill Linpro AS (2010). The LimuCross Reference. Available
online: http://Ixr.linux.no.

[Renzelmann and Swift, 2009] Renzelmann, M. J. and SwiftMV(2009). Decaf: Moving
Device Drivers to a Modern Language. Rroceedings of the USENIX Annual Technical
Conference

[Ryzhyk et al., 2009a] Ryzhyk, L., Chubb, P., Kuz, I., and $¢ej G. (2009a). Dingo: Taming
Device Drivers. InEuroSyspages 275-288.

[Ryzhyk et al., 2009b] Ryzhyk, L., Chubb, P., Kuz, I., Suekr,L., and Heiser, G. (2009Db).
Automatic Device Driver Synthesis with Termite. 8BOSP pages 73-86.

[Ryzhyk et al., 2010] Ryzhyk, L., Zhu, Y., and Heiser, G. (201 The case for active device
drivers. InProceedings of the 1st ACM SIGCOMM Asia-Pacific WorkshopysteBispages
25-30.

[Spaans, 2010] Spaans, J. (2010). The Linux Kernel Mailirgy Archive. Available online:
http://lkml.org.

89

[Swift et al., 2002] Swift, M. M., Martin, S., Levy, H. M., anEggers, S. J. (2002). Nooks: an
architecture for reliable device drivers. Rroceedings of the 10th ACM SIGOPS European
Workshop pages 102—-107.

[University of Colorado at Boulder, 2011] University of @ohdo at Boulder, University
of Paderborn, M. U. (2011). Eli: An Integrated Toolset fom@uler Construction. Available
online: http://eli-project.sourceforge.net/.

[Venkateswaran, 2008] Venkateswaran, S. (200B¥sential Linux Device DriversPrentice
Hall International.

[Witkowski et al., 2007] Witkowski, T., Blanc, N., Kroenin@®., and Weissenbacher, G. (2007).
Model checking concurrent linux device drivers. 28nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2(iafes 501-504.

90

