
Supernova - A Multiprocessor Aware Real-Time Audio
Synthesis Engine For SuperCollider

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Musikinformatik

eingereicht von

Tim Blechmann
Matrikelnummer 0526789

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao. Univ. Prof. Dr. M. Anton Ertl

Wien, 09.06.2011
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Supernova - A Multiprocessor Aware Real-Time Audio
Synthesis Engine For SuperCollider

Master Thesis

In partial fulfillment of the

Master degree

in

Music Informatics

Presented by

Tim Blechmann
Matriculation Number 0526789

at the
Faculty of Informatics, Vienna University of Technology

Supervisor: Ao. Univ. Prof. Dr. M. Anton Ertl

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at



Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – ein-
schließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 09.06.2011
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)



Abstract

These days, most computer systems are built with multi-core processors. However,
most computer music systems use a single-threaded synthesis engine. While the single-core
performance for current CPUs is sufficient for many computer music applications, some
demanding applications benefit from using multiple processors simultaneously.

Real-time audio synthesis imposes specific constraints regarding real-time safety, since
the synthesis engine needs to be tuned for worst-case latencies below one millisecond. As
a result, no blocking synchronization can be used and the signal processing graph needs to
be split into reasonably sized parts, that provide enough parallelism without introducing a
significant scheduling overhead.

During the work on this master thesis, I developed Supernova as a multiprocessor
aware synthesis engine for SuperCollider. SuperCollider is a computer music system based
on a dynamic scripting language with a real-time garbage collector, that is used to control
a separate audio synthesis server. Supernova replaces the original audio synthesis engine.
It is not possible to automatically parallelize the synthesis graph of SuperCollider without
fundamentally changing the semantics of the SuperCollider class library. Therefore a the
programming model for the synthesis graph was extended, exposing parallelism explicitly
to the user. To achieve this, I propose two simple concepts, ‘parallel groups’ and ‘satellite
nodes’.

To my knowledge, Supernova is the first parallel audio synthesis engine that is designed
for real-time operations under low-latency constraints without adding any additional latency
to the audio signal.

ii



Kurzfassung

In den meïsten derzeit gebauten Computern werden Mehrkernprozessoren verbaut. Allerd-
ings benutzen die meissten Computermusik Systeme einen einzigen Thread für die Klangsyn-
these. Für viele Anwendungsbereiche der Computermusik ist die Rechenleistung eines einzel-
nen Kerns einer aktuellen CPU ausreichend, allerdings gibt es einige rechenintensive An-
wendungsfälle, in denen man von der Rechenleistung mehrerer Kerne Gebrauch machen
kann.

Klangsynthese in Echtzeit hat bestimmte Anforderungen bezüglich ihrer Echtzeitfähigkeit,
da die Synthese-Engine für worst-case Latenzen von unter einer millisekunde ausgelegt sein
muss. Aus diesem Grund dürfen keine blockierenden Synchronisationsstrukturen einge-
setzt werden und der Signalverarbeitungsgraph muss in sinnvolle Teile zerlegt werden, die
eine ausreichende Parallelität aufweisen ohne einen erheblichen Synchronisationsoverhead
zu verursachen.

Während der Arbeit an dieser Masterarbeit habe ich Supernova entwickelt, einen
mehrprozessorfähiger Klangsynthese Server für SuperCollider. SuperCollider ist ein Com-
putermusik System, das auf einer dynamischen Skriptingsprache mit einem echtzeitfähigen
Garbage Collector basiert, mit der ein separater Klangsynthese Server gesteuert wird. Su-
pernova ersetzt den ursprünglichen Klangsynthese Server. Es nicht möglich ist, den Synthe-
segraphen von SuperCollider automatisch zu parallelisieren, ohne die Semantik der Klassen-
bibliothek grundlegend zu verändern. Daher wurde das Programmiermodell des Synthe-
segraphen erweitert, um dem Benutzer eine Möglichkeit zu geben, Parallelismus explizit zu
formulieren. Dafür schlage ich zwei einfache Konzepte vor, ‘parallele Gruppen’ und ‘Satel-
litenknoten’.

Meines Wissens ist Supernova die erste parallele Klangsynthese-Engine, die für Echtzei-
tanwendungen bei niedrigen Latenzzeiten ausgelegt ist, ohne das Audiosignal zu verzögern.

iii



Contents

Abstract ii

Kurzfassung iii

Contents 1

1 Introduction 5
1.1 Computer Music Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 SuperCollider & Concepts of Computer Music Systems . . . . . . . . . . . . . . . 6
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Parallelism in Computer Music Systems 13
2.1 Data-Level Parallelism: Single Instruction Multiple Data . . . . . . . . . . . . . . 14
2.2 Thread Level Parallelism: Signal Graph Parallelism . . . . . . . . . . . . . . . . . 15
2.3 Thread Level Parallelism: Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Extending the SuperCollider Graph Model 19
3.1 The SuperCollider Node Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Automatic Parallelism for SuperCollider? . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Parallel Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Proposed Extension: Satellite Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Alternative Approach: Freeform Node Graphs . . . . . . . . . . . . . . . . . . . . 23

4 The Implementation of Supernova 25
4.1 Parallelism in Low-Latency Soft Real-Time Systems . . . . . . . . . . . . . . . . 25
4.2 Dsp Thread Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Extending the SuperCollider Plugin Interface . . . . . . . . . . . . . . . . . . . . 30
4.4 Nova SIMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Experimental Results 37
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Engine Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Benchmarking Latency Hotspots . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Related Work 45
6.1 Max-like languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Csound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Distributed Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1



Contents

6.4 Faust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5 Occam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Conclusion & Future Work 53
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 55

2



Contents

Acknowledgments

I would like to thank a few people:

James McCartney for creating and open sourcing SuperCollider

Dr. Dan Stowell for his valuable feedback

Ao. Univ. Prof. Dr. M. Anton Ertl for his guidance when writing this thesis

my parents for supporting me during the whole time of my studies

3





Chapter 1

Introduction

For many years the number of transistors per CPU has increased exponentially, roughly doubling
every 18 months to 2 years. This behavior is usually referred to as ‘Moore’s Law’. Since the
early 2000s, this trend does not translate to an increase of CPU performance any more, since the
techniques that caused these performance gains have been maxed out [OH05]. Processors have
been pipelined, executing single instructions in a sequence of stages, which increases the through-
put at the cost of instruction latency. Since the individual stages require a reduced amount of
logic, pipelined CPUs allow higher clock rates. Superscalar processors try to dynamically execute
independent instructions in parallel. Increasing the CPU frequency would cause an exponential
growth in power consumption, imposing practical problems for cooling, mobile applications and,
for the musician, fan noise. While power consumption decreases as the die shrinks, it has been
suggested to reach its physical limits in the near future [Kis02]. So instead of trying to increase
the CPU performance, the computer industry started to increase the number of cores per CPU.
These days, most mobile solutions use dual-core processors, while workstations are available with
4 or even up to 8 cores.

The computer music systems that are commonly used these days are designed for single-
processor machines [Wes08]. While the single-processor performance of current CPUs is suffi-
cient for many use cases, the limits can quickly be reached when using more complex synthesis
algorithms.

1.1 Computer Music Systems

Computer music systems in general consist of two parts: the audio synthesis engine and the
control engine, controlling the synthesis. This differentiation was formulated by Max Matthews
in the early days of computer music. In his 1969 publication The Technology of Computer Music
[MMM+69] he wrote:

“The two fundamental problems in sound synthesis are (1) the vast amount of data
needed to specify a pressure function — hence the necessity of a very fast program
— and (2) the need for a simple, powerful language in which to describe a complex
sequence of sounds.”

Both parts can be used independently. Historically, the first composers using computers were
trying to generate structures, e.g. Iannis Xenakis computed velocity trajectories for glissandi
for his 1954 orchestral composition “Metastasis” [Dun92] and produced data based on densities
and probabilistic distributions for his stochastic compositions [Xen01]. Lejaren Hillier wrote a

5



1. Introduction

number of algorithmic compositions where the whole score is generated by computers, starting
with his 1957 string quartet “Illiac Suite” [Sup97].

The earliest experiments of digital audio synthesis were carried out by Max Matthews, work-
ing as a research engineer at Bell Laboratories [Man04]. In 1957 and 1958, he developed the
experimental programs “Music I” and “Music II”, that were quite limited in terms of audio
synthesis. In the early 1960s, Matthews extended the program in collaboration with Joan Miller
to “Music III” and “Music IV”, which started to interest composers like James Tenney or John
Pierce, who realized the first tape compositions with digitally synthesized sounds as Bell Labs.
While “Music I” to “Music IV” where written in assembler for specific hardware (IBM 704 and
7094), Matthews developed “Music V” in 1968 using the Fortran programming language.

1.2 SuperCollider & Concepts of Computer Music Systems

SuperCollider can be seen as a distant descendant from the MusicN program family. It was
originally developed by James McCartney for MacOS9 on the PPC platform as proprietary
software [McC96]. In 2002, SuperCollider 3 was released as open source software under the GNU
General Public License, introducing the current client/server architecture. It was then ported to
Linux by Stefan Kersten.

It is a very modular system, based on an object-oriented dynamic programming language
which is inspired by SmallTalk. The main design decision is a strong separation of synthesis
engine and control language. The audio synthesis engine scsynth is designed as server [McC02],
providing a simple API for controlling the audio synthesis. Scsynth supports both real-time
synthesis, playing through an audio interface and non real-time synthesis for generating audio
files. The synthesis control language sclang was developed as domain-specific programming
language for real-time audio synthesis and algorithmic composition, implementing the Johnston-
Wilson real-time garbage collector [WJ93]. Sclang provides a huge class library for different
kinds of aspects like real-time control of the server, MIDI1 communication, computer-assisted
composition, pattern sequencing or score generation.

Language and Server communicate via an interface of about 70 commands, using a subset of
the Open Sound Control (OSC) protocol [WF97]. OSC is a binary protocol that was designed as
successor of MIDI, and that is usually transferred via network sockets (usually UDP). Scsynth
implements a variation of OSC2 exposing its interface to external programs via TCP or UDP
sockets for real-time operation. For non real-time mode, it can read time-tagged OSC commands
from a binary file, that can easily be generated from sclang.

There are several IDEs that support sclang. The first IDE was a native Mac OSX application,
that is shipped with the SuperCollider sources. As part of the Linux port, an emacs-based IDE
was developed, that is probably the most commonly used interface to sclang beside the OSX
app. There are other editor modes for vim, gedit and eclipse, and a python-based IDE, that was
originally written when SuperCollider was ported to Windows.

1.2.1 Digital Audio

Digital audio signals are usually represented as sequences of single-precision floating point num-
bers, although listening tests suggest an improvement in audio quality by using double-precision
floating point numbers instead [Gog]. Audio streams are usually processed as blocks of samples,
where the block size is typically between 64 and 2048 samples. Bigger block sizes typically result
in a reduced scheduling overhead and better performance, while increasing the audio latency.

1Musical Instrument Digital Interface, industry-standard protocol for communication between audio hardware.
2It does not implement address pattern matching and adds an extension for integer addresses.

6



1.2. SuperCollider & Concepts of Computer Music Systems

SynthDef (\sweep , {

arg duration = 10, amp = 0.01, freq_base = 1000, freq_target = 1100;

var freq = Line.kr(freq_base , freq_target , duration );

var sine = SinOsc.ar(freq);

var env = EnvGen.kr(Env.linen (0.1, duration - 0.5, 0.4, amp),

doneAction: 2);

Out.ar(0, sine * env);

}). add;

Listing 1.1: SynthDef for a sweeping sine wave

In real-time computer music systems, the engine is triggered by the audio callback3, which is
driven by the interrupt of the audio hardware. During each callback, the backend delivers audio
data from the input ports of the device and requests new data to be sent to the audio output.

Audio devices use a small number of blocks to transfer the audio stream between computer
and audio hardware. Increasing the number of blocks also increases the audio latency, but can
hide missed deadlines e.g. in cases of short CPU peaks. Currently most digital audio hardware
supports sampling rates of 44100 Hz4 and 48000 Hz. In addition to that, most professional
hardware supports sampling rates of 96 kHz or even 192 kHz. Running a system with 64 samples
per block at 48 kHz, the system needs to schedule one audio interrupt/callback every 1.3 ms,
each having a deadline of 1.3 ms. Additional buffering in hardware and digital/audio conversion
may increase the latency further than the theoretical minimum of 2 audio buffers for playback.

For computer-based instruments a playback latency below 20 ms is desired [Mag06], for live-
processing of percussion instruments round-trip latencies for below 10 ms is required to ensure
that original and processed sounds are perceived as single event [Bou00]. So hardware block sizes
of down to 64 samples can be necessary.

1.2.2 Organization of Audio Synthesis in SuperCollider

In SuperCollider, instrument definitions are called synthdefs. They are built with the function
syntax of sclang and are instances of the SynthDef class. Listing 1.1 shows a synthdef for a
sweeping sine wave. The function syntax is used to build a signal flow graph. A synthdef can be
seen as directed acyclic graph (DAG) with ugen as nodes. The resulting ugen graph is shown
in Figure 1.1.

Unit Generators

The concept of the ugen is fundamental to most, if not all computer music systems. Unit genera-
tors are the smallest atomic units of the synthesis graph, like oscillators, filters, simple arithmetic
operators, but also more complex objects like for granular synthesis or machine listening. Unit
generators can have parameters, for example a sine wave oscillator will have a frequency pa-
rameter, a digital filter parameters for frequency and filter quality. Parameters can be constant
numbers, but also the output of other unit generators. Some unit generators also access shared
resources like audio busses or buffers.

3This applies to backends implementing a ‘pull’ API, that is used by most professional audio driver APIs like
Jack, ASIO or CoreAudio

444100 Hz is the sampling rate of audio CDs

7



1. Introduction

Control.kr Control.ir

Line.kr -

SinOsc.ar EnvGen.kr

*

Out.ar

Figure 1.1: Ugen Graph for Listing 1.1

In SuperCollider, Unit Generators are designed as plugins for scsynth which are dynamically
loaded at startup. The interface is based on a simple C API. All function calls from the plugin
to scsynth are done indirectly using a table of function pointers. The simplicity and clearness of
the API makes it easy to load unit generators to other systems. Ugens also have a representation
as sclang classes. These classes are usually derived from the abstract UGen class.

While typically unit generators are specified explicitly, some ugens are generated implicitly,
such as Control ugens that are auto-generated from the arguments of the synthdef function, or
from operators that are applied on signals. The unit generators for the sweep synthdef are listed
in Table 1.1.

Signal Rates

Unit generators can be evaluated at different rates, the most commonly used rates are audio
rate, control rate and instrument rate signals. Audio rate signals are computed at the
sampling rate of the audio backend, usually the audio hardware of the system. Some signals are
not supposed to generate audible signals, but to control parameters of the actual audio synthesis.
These signals can be computed at a lower rate in order to save CPU time. Typical applications
for control-rate signals would be envelopes or LFOs5. The control rate of scsynth is specified as
a down-sampling factor relative to the audio rate, typically 64. For some applications, higher
or lower down-sampling factors are used. Instrument rate signals are computed only once per
instrument at the time of instrument creation.

In the SuperCollider language, ugens are usually instantiated explicitly by calling one of the
class methods ar, kr and ir of the ugen class to run at audio, control or instrument rate signals.
In addition to that, SuperCollider has a fourth notion, called demand rate. Demand rate unit
generators are not evaluated regularly, but on demand, whenever a special Demand unit generator
is triggered6 [M+96]. Table 1.1 also mentions the signal rate of the unit generators from Listing
1.1.

Synthdefs & Synths

Since single unit generators are usually very small, possibly only taking a few hundreds or
thousands of CPU cycles, it would result in a high overhead if a graph representation of the
ugen graph would have to be traversed for computing a sample block. In order to obtain a

5Low Frequency Oscillator, oscillator with a low (i.e. not audible) frequency, commonly used for modulating
control values. In contrast to audio oscillators, aliasing effects matter less.

6A trigger is defined as transition from a non-positive to a positive value.

8



1.2. SuperCollider & Concepts of Computer Music Systems

Ugen Type Rate Function

Control instrument rate synth parameters (from function arguments)
Control control rate synth parameters (from function arguments)
Line control rate frequency ramp
SinOsc audio rate generate sine wave signal
- control rate computation of the second argument for Env.linen

EnvGen control rate envelope
* audio rate apply the envelope to the sine wave
Out audio rate write the signal to a summing bus

Table 1.1: Unit Generators for a sine sweep

// routine to manually schedule synths

~r = Routine ({

Synth(\sweep , [\duration , 10,

\amp , -12.dbamp ,

\freq_base , 1000,

\freq_target , 1100]);

1.0. wait;

Synth(\sweep , [\duration , 9,

\amp , -9.dbamp ,

\freq_base , 1000,

\freq_target , 200]);

1.5. wait;

Synth(\sweep , [\duration , 7.5,

\amp , -18.dbamp ,

\freq_base , 1000,

\freq_target , 10000]);

});

~r.play // run the routine

Listing 1.2: Schedule 3 sweeping sine waves from a routine

higher performance, the ugen graph is topologically sorted, and the unit generators are stored
in a sequential data structure, which can be iterated efficiently [Puc91b], reducing the ugen
scheduling overhead to a minimum.

The SuperCollider language either sends the linear representation of the synthdefs to the
server via OSC or stores it on the file system, from where they can be loaded by the server later.
On the server, synthdefs can be instantiated as synths. Listing 1.2 shows an example, how 3
different sine sweeps can be scheduled from sclang via a routine. The synths are instantiations of
synthdefs on server. In the example, a routine (a rough equivalent to a thread) is started, that
schedules notes by creating instances of the Synth class and waiting for a number of seconds.
Alternatively SuperCollider provides a pattern sequencer library, that provides a compact syntax
to algorithmically generate patterns, that can be used for generating synths on the server. This
library also helps a lot when doing non real-time synthesis to generate sound files instead of
sending the output to the audio interface in real-time. Listing 1.3 shows the equivalent code

9



1. Introduction

// pattern

~p = Pbind (\instrument , \sweep ,

\duration , Pseq ([10, 9, 7.5]) ,

\db , Pseq([-12, -9, -18]),

\freq_base , 1000,

\freq_target , Pseq ([1100 , 200, 10000]) ,

\dur , Pseq([1, 1.5, 0])

);

// play back in real -time

~p.play;

// render soundfile

~p.asScore (10). recordNRT (" sweep.osc", "sweep.wav")

Listing 1.3: Schedule 3 sweeping sine waves from a pattern

using the pattern library for both real-time and non real-time synthesis.

The SuperCollider Node Graph

When synths are created on the SuperCollider server, they are added at a certain position in the
node graph. SuperCollider has the notion of groups, which are linked lists of nodes, where each
node member can be either a synth or another group, effectively modeling a tree data structure
with a group as its root. The position can be specified with one reference node and one relational
argument, which can be ‘before’ or ‘after’ a reference node or at ‘head’ or ‘tail’ of a reference
group. A more detailed description of the SuperCollider node graph is given in Section 3.1.

1.3 Contribution

To my knowledge, the Supernova synthesis server makes SuperCollider the first general purpose
computer music system with multiprocessor support, that is truly dynamic, scalable and can be
used for low-latency applications. In order to achieve this, two problems had to be solved.

1. An extension to the SuperCollider node graph was introduced to expose parallelism to the
user.

2. A real-time safe audio synthesis engine has been designed, that can meet the latency
requirements for computer music.

1.4 Overview

This thesis is divided into the following parts. Chapter 2 analyzes how audio synthesis engines
can make use of parallelism. Both data-level parallelism and different types of thread-level
parallelism are discussed. In Chapter 3 the SuperCollider node graph is explained in detail,
possibilities for automatic parallelization are discussed and two concepts are proposed which
would expose parallelism explicitly to the user. Chapter 4 analyses the technical issues when
implementing a real-time audio synthesis engine that is suited for low-latency applications, and
describes the interesting parts of the implementation of Supernova. It also contains a section
on the Nova-SIMD framework, a generic framework for making use of data-level parallelism

10



1.4. Overview

with a focus on audio synthesis. Chapter 5 shows some experimental results and discusses both
throughput and worst-case latency and analyzes the latency hotspots. In Chapter 6 the approach
to parallelism of other computer music systems is evaluated according to the definitions that have
been discussed in Chapter 2.

11





Chapter 2

Parallelism in Computer Music Systems

Some researchers like Roger Dannenberg suggest that computer music applications can be char-
acterized as ‘embarrassingly parallel’ [Dan08]. While this may certainly be true for some appli-
cations, it is not necessarily the case in general, since some use cases have a high parallelism,
but require a certain amount of synchronization. For our analysis it may be helpful to define a
number of concepts that are used in different systems.

Voices
Polyphonic music denotes music, which is using two or more (melodic) voices, each being
independent from the others.

Melodies
A melody can be considered as a series of ‘notes’, unless notes should be played as ‘legato’1,
they can be computed independent from each other. The example with 3 sine sweeps from
the introduction would fall into this category.

Tracks and Buses
Digital Audio Workstations (DAWs) have the notion of tracks and busses. A track is an
entity consisting of an audio input, a soundfile recorder and playback unit, a mixer strip
where effects can be added to the audio signal and an audio output. A bus has a similar
concept, although it omits the audio playback/recording feature. Figure 2.1 shows a typical
DAW. Two stereo tracks (‘Tim 1’ and ‘Tim 2’) are mixed down to one stereo bus (‘Mix
Tim’), which is mixed with the mono track (‘Manuel 1’) to the ‘master’ bus.

Channels
Many use cases deal with separate audio signals, each treated as one entity. They are
usually referred to as channels. Tracks, busses, samples, audio files or instruments can
have multiple channels. The most commonly used stereo signals have two channels. For
some applications like ambisonics or wave field synthesis, a large number of channels (dozens
to hundreds) is required.

Additive Synthesis
In order to create sounds with specific spectra, additive synthesis is the easiest synthesis
technique. A sound is generated by adding the signals of multiple oscillators to build
the desired spectrum. Since each oscillator is working as independent unit, parallelizing
additive synthesis is very easy in theory, but difficult in practice, since the expenses for each

1Notes are played without interruption

13



2. Parallelism in Computer Music Systems

Figure 2.1: A typical DAW session view with 3 tracks and 2 busses

oscillator are rather small, so scheduling overhead would be quite significant (see Section
2.2.2).

Some concepts like channels are clearly embarrassingly parallel, if all channels can be computed
completely independently. With tracks, busses or voices it depends on the use case. In some
applications they can be computed independently, in others, e.g. if a multi-track recording is
mixed down to 2 channels during mastering, or multiple voices should be played back through
the same speakers, they require some synchronization. Melodies of independent but possibly
overlapping notes, or additive synthesis would require a large synchronization effort.

Apart from making use of data-level parallelism via SIMD instructions, there are two ap-
proaches for using thread-level parallelism in computer music systems: one approach is using
graph parallelism, the other one is pipelining.

2.1 Data-Level Parallelism: Single Instruction Multiple Data

Today’s superscalar CPUs use instruction level parallelism to increase throughput. In particular,
SIMD instructions are highly usable for implementing ugen functions. SIMD instructions are
special CPU instructions that can process small arrays of data instead of single scalars. E.g. the
Intel SSE instruction set family provides instructions for integer and floating point numbers of
different size, working on a set of 8 or 16 128-bit registers. Typically instructions are available
for element-wise arithmetic, type conversions or bit-wise operations.

14



2.2. Thread Level Parallelism: Signal Graph Parallelism

2.1.1 Compiler Vectorization

Under certain circumstances, compilers are able to generate SIMD instructions automatically
[Nai04]. This optimization is related to loop unrolling and requires some knowledge about the
code in order to deal with aliasing and alignment issues. Aliasing issues occur if two pointers
point to overlapping memory regions. If the compiler cannot ensure that arguments don’t alias, it
cannot generate SIMD instructions, although the program logic may permit it. Similarly, most
SIMD instructions require a certain memory alignment that the compiler cannot guarantee.
SIMD instructions for non-aligned memory regions may exist, but require extra (and possibly
slower) load/store instructions when transfering data between registers and memory. Compilers
also generate extra code for loop peeling and versioning, which could be avoided if the specific
code is only called under valid alignment and aliasing constraints.

2.1.2 Vectorized Audio Signal Processing

There are several types of ugen functions that benefit from SIMD instructions. The most ob-
vious functions are vector functions like basic arithmetic between signals and scalars, but also
signal comparison, clipping, bitmasking (like sign bit clearing or extraction), rounding, mixing,
cross fading, panning or waveshaping. Some algorithms, like finding the peak of a signal block
need some adaptation, but can also be vectorized. With some vectorization techniques, even
branching algorithms can be implemented with SIMD instructions efficiently. Helmut Dersch
used branch elimination techniques to implement SIMDfied vector versions of single-precision
floating point libm math functions for SSE2, PowerPC and Cell architectures [Der08]. Some
math functions are implemented as branching algorithms with different approximation schemes
for different parameter intervals. In order to implement a vectorized version of these algorithms,
all approximations have to be computed and the actual result needs to be selected by using
bitmasks. Although more data is computed than actually needed, the code still significantly
outperforms the libm implementations, because the code can be pipelined very well.

Multi-Channel Audio Signal Processing with SIMD

Less common applications for SIMD instructions are multi-channel applications. In contrast to
vector or vectorizable code, recursive functions like IIR filters could be computed for multiple
channels at the same time. This is especially useful if the number of channels equals the number
of samples that can be processed during one SIMD instruction, and if the memory representation
of the samples is interleaved. If not, additional instructions are required for packing the argument
data to the SIMD register or unpacking the result.

On some SIMD implementations, like the SSE implementation for current Intel processors,
the simdfied version of an instruction has the same cost as its single-data equivalent [Inta]. Unfor-
tunately, I am not aware of any implementation that actually makes use of SIMD instructions for
multi-channel audio processing. While it is possibly interesting to provide some implementations,
it is beyond the scope of this thesis.

2.2 Thread Level Parallelism: Signal Graph Parallelism

As described earlier, there are two notions of signal graphs in SuperCollider, ugen graphs and
node graphs. While both types share a similar structure (both are directed acyclic graphs) and
can therefore be parallelized with the same algorithms, different CPU expenses for ugens and
nodes imply different strategies for parallelization. The ugen graph parallelism can be considered
as fine-grained, while the node graph parallelism is coarse-grained.

15



2. Parallelism in Computer Music Systems

There is no clear definition for the graph granularity, since it is possible to build nodes with
just one unit generator, but this is not the common case. By a rule of thumb, fine-grained node
graphs could be defined as node graphs with a significant node scheduling overhead.

2.2.1 Coarse-Grained Graph Parallelism

For coarse-grained graphs the scheduling overhead becomes less crucial, so each graph node
can be scheduled as a task of its own. Letz et al [LOF05] proposed a dataflow scheduling
algorithm which is implemented in Jack2. The idea is to distinguish between nodes that are
‘ready’, ‘waiting’ and ‘executed’. Each node has an ‘activation count’, that equals the number of
preceding nodes which have not been executed. At the beginning of each dsp cycle, the activation
count is set to the number of direct predecessors, and nodes with an activation count of zero are
scheduled for execution. After a node has been executed, it decrements the activation counts of
all its succeeding nodes and if it drops to zero, they are scheduled as well.

2.2.2 Fine-Grained Graph Parallelism

Building signal graphs from unit generators, like creating SuperCollider synthdefs, results in very
fine-grained graphs, since ugens can be very light-weight, maybe just requiring a few hundred
to a few thousand CPU cycles (compare with Section 3.1). While a näıve approach would be
to schedule each ugen on its own by traversing the graph in parallel, it would introduce a high
scheduling overhead. On the other hand, statically scheduling ugens in a sequential order can be
implemented quite efficiently [Puc91b], reducing the scheduling overhead to a minimum. Apart
from the scheduling overhead, running related ugens serialized on one CPU may reduce cache
misses, if the CPUs don’t use a shared cache.

Ulrich Reiter and Andreas Partzsch [RP07] proposed an algorithm to cluster a fine-grained
graph to a coarse-grained graph. The algorithm tries to find parallel sections in a DAG and to
combine graph nodes to node clusters of similar CPU expenses. In order to achieve this, a “Pro-
cessing Time Index” (PTI) is assigned to each graph node. For the best results, the maximum
number of parallel sections matches the number of available CPUs. A practical problem with
this algorithm is the requirement to know the CPU costs of each graph node. This may lead to
a few substantial issues.

� The costs for a ugen may depend on the block size. Vectorizable nodes may be more
efficient for block sizes of a multiple of the SIMD vector size.

� Especially for low-overhead unit generators, or wave-table oscillators, the cost may depend
on memory locality. They could be considerably faster when the required memory regions
are available in the CPU cache.

� Some unit generators do not have a constant algorithmic constant complexity. For example
digital filters need to compute new filter coefficients when parameters like cutoff frequency
or filter quality change. Since this requires calls to the math library, the costs may be
significant. Other unit generators may have a parameter controlling the number of active
voices, in these cases the required CPU costs would grow linearly with this parameter.

� Some unit generators for granular synthesis have a parameter to change the number of
concurrent voices, changing the CPU costs linearly.

� The cost for a unit generator depends on the type of the CPU.

16



2.3. Thread Level Parallelism: Pipelining

SinOsc.ar(440)

Out.ar(53) In.ar(53)

Out.ar(0)

?

Figure 2.2: Example for an Ambiguous Dependency Graph

While the algorithm by Reiter and Partzsch works fine for simple signal flow graphs, it is hard to
adapt the algorithm if the graph nodes access shared resources. In single-threaded applications,
the resource access is ordered implicitly by the linearized (topologically sorted) graph. Apart
from the signal flow, this implicit order would add another set of ordering constraints between all
nodes which are able to access one resource. An example for this issue can be seen in the graph
of Figure 2.2. A sine wave is generated and written to the bus number 53 in one part of the
graph, a signal is read from this bus and then written to bus number 0. Without taking resource
access into account, this graph could be split into two parts, one for the left and one for the right
part, since there is no explicit dependency between them. When the graph is linearized, it would
generate a structure in which either the left or the right side of the graph would be evaluated
first, implicitly ordering to bus access either as ‘write 53, read 53, write 0’ or as ‘read 53, write
0, write 53’. Both parts could be evaluated in parallel, if the In unit generator would read from
another bus, like number 54.

While in this case, it could be statically analyzed that two parts access the same resources, it
cannot be done in the general case, since the resources may be changed at run-time, depending
on the unit generator, even at audio-rate. To cope with this, one would have to introduce
an implicit order for all objects that are accessing a certain type of resource. This would add
practical problems, since the algorithm requires some knowledge, of which nodes can access which
type of resource. Depending on the use case, a huge number of implicit dependencies may be
added to a signal graph, greatly reducing the parallel parts of the graph.

2.3 Thread Level Parallelism: Pipelining

As a fundamentally different approach, pipelining techniques can also be applied to sequential
dependency graphs. When having a sequence of graph nodes which are supposed to be executed
in a sequential order, nodes requiring the computational result of one of the earlier nodes can
use the result of the signal block which has been computed during the last execution of the
dependency graph [Dan08]. Figure 2.3 shows the behavior of a pipeline with 4 stages. During
each clock tick, each pipeline stage processes one block of audio data and passes it to the next
stage. Parallelism is achieved by computing each pipeline stage on a separate CPU. Since every
pipeline stage delays the signal by one sample block, the pipelining technique is of limited use for
low-latency applications. Since pipelining is usually defined statically, it doesn’t necessarily scale
well when increasing the number of CPUs. The execution time is bounded by the most expensive
pipeline stage. So in order to achieve optimal speedup, all stages should require roughly the same

17



2. Parallelism in Computer Music Systems

stage 1 block 1 block 2 block 3 block 4 block 5 block 6 block 7

stage 2 block 1 block 2 block 3 block 4 block 5 block 6

stage 3 block 1 block 2 block 3 block 4 block 5

stage 4 block 1 block 2 block 3 block 4

Figure 2.3: Pipeline with 4 stages

CPU time.
In order to reduce the latency of pipelining, each signal block can be split into smaller parts,

which are sent through the pipeline. With this approach, the pipeline would have to be filled
and emptied during each signal block. During the time that the pipeline needs to be filled or
emptied, not all pipeline stages have work to do, which will limit the speedup. Smaller block
sizes usually result in a higher scheduling and loop overhead, limiting the throughput even more.
The lowest reasonable size for pipelined blocks would probably be the cache line size (16 samples
on current CPUs). An experimental version of Jack2 implements pipelining with the constraints
[OLF08] of splitting one Jack block to smaller blocks. Unfortunately, the developer team didn’t
publish any benchmarks of their approach.

In the early 1990s, static pipelining was implemented in FTS, running on the IRCAM Signal
Processing Workstation. Recently, the same approach has been introduced into Pure Data. Both
implementations share the same approach. The user can define subpatches, that should run on
a different CPU. A more detailed discussion on these systems can be found in Section 6.1.

18



Chapter 3

Extending the SuperCollider Graph
Model

Supernova introduces explicit node parallelism into the node graph model of SuperCollider.
Explicit parallelism can also be found in systems the max-like systems Max/MSP (via poly~),
Pure Data (via pd~) and it was implemented in FTS on the ISPW, although the approaches of
the different systems are neither generic nor scalable (compare Section 6.1).

Csound has no notion of an explicit instrument graph. For a semantically correct paralleliza-
tion, a dependency analysis is required to determine the parts of the instrument graph that can
be executed in parallel [Wil09] (a more detailed discussion can be found in Section 6.2). For
several reasons that are discussed in Section 3.2, this approach is not feasible for SuperCollider.

3.1 The SuperCollider Node Graph

Some overview on the SuperCollider node graph system was already given in Section 1.2.2. This
Section will discuss the node graph and its implications in more detail. The examples assume
two synthdefs, ‘myGenerator’, generating an audio signal, and ‘myFx’, that applies an effect on
the signal. For the sake of simplicity, it is assumed that the busses used are hardcoded into the
synthdefs, ‘myGenerator’ should write to a bus that is read by ‘myFx’, which itself writes to the
bus number 0 (the first physical output).

The code in Listing 3.1 shows a simple use case with 4 generators and one effect synth, which
is quite typical for using SuperCollider. Evaluating this code creates a group, inserts 4 synths of
the type ‘myGenerator’ (Synth.head adds the synth to the head of the target group), and adds
one effect synth (‘myFx’) after this group (via Synth.after). The corresponding node graph is
displayed in Figure 3.1.

A group is defined as a linked list of nodes, which can be synths or groups. The SuperCollider

var generator_group , fx;

generator_group = Group.new;

4.do {

Synth.head(generator_group , \myGenerator)

};

fx = Synth.after(generator_group , \myFx);

Listing 3.1: Using SuperCollider’s Group class

19



3. Extending the SuperCollider Graph Model

Group: generator_group

Synth: myFx

Root Group

Synth: myGenerator

Synth: myGenerator

Synth: myGenerator

Synth: myGenerator

Child Group

Figure 3.1: Node Graph for Listing 3.1

server provides a fixed root group, that serves as root for the node hierarchy, and which is used
as default target if the user does not provide a target when creating a node (like when creating
the group via Group.new in the example). So the node hierarchy actually models a tree structure
with synths (or empty groups) as its leaves. Groups have some semantic implications, which are
all related to a structured audio synthesis:

Structuring the audio synthesis
Groups function as a nested container for other nodes. They can be used to build a
structure for an audio synthesis application, and they provide a high-level interface to free
all child nodes or recursively free all synths while keeping the group structure untouched.

Order of execution
Groups define the order of execution of their child nodes. When a group is executed, the
nodes are evaluated from head to tail, recursively traversing child groups. In this example,
first the group generator_group would be evaluated, by evaluating each myGenerator

instance from head to tail, and then the myFX synth would be evaluated. In this example,
we need to make sure that the generator_group is actually evaluated before the effect
synth.

Node addressing
Groups can be used to address all children with a single command. This is especially handy
when setting control parameters for multiple nodes.

When a new node is added to the node hierarchy, its position is specified by a reference node
and a relation. The relations are addToHead and addToTail, adding the new node to the head
or the tail of a reference group, before and after, adding a node before or after a reference
node, or replace, replacing a reference node.

3.2 Automatic Parallelism for SuperCollider?

SuperCollider’s groups are sequential by definition. There is no automatic dependency analysis
(like with instruments in Csound or with tilde objects in max-like systems), but the user is
responsible for defining the correct order of execution. In SuperCollider, this wouldn’t even
be possible. The reason for this is the way that resources are accessed by unit generators.
While in Csound instruments communicate by using global variables, or a built-in bus system,
SuperCollider uses only busses for synth communication. Buses are addressed by integer values,
that are encoded into signals and passed to the arguments of ugens. Unit generators are loaded
as plugins into the SuperCollider server and this is no exception for ugens that are accessing
busses (or buffers). The server has no means to determine whether a ugen is accessing a specific
bus or buffer.

20



3.3. Parallel Groups

var generator_group , fx;

generator_group = ParGroup.new;

4.do {

Synth.head(generator_group , \myGenerator)

};

fx = Synth.after(generator_group , \myFx);

Listing 3.2: Using the Supernova ParGroup class

Synth: myGenerator Synth: myGenerator Synth: myGenerator Synth: myGenerator

Synth: myFx

Figure 3.2: Dependency Graph for Listing 3.2

Theoretically it would be possible to add some information about the resources that a synth
is accessing to the internal data structures. However there would be two cases that could not
be handled by this approach. First, the resource index could be controlled by another synth,
so it would not be possible to determine the resources that are accessed by a synth before the
synth is evaluated. It would even be possible, that the signals encoding the resource indices run
at audio rate, making an automatic dependency analysis at control-rate impossible. The only
workaround (that can actually be found in the parallel version of Csound, compare Section 6.2),
would be to execute all synths sequentially, unless the resource access pattern can be inferred
before the control-rate tick. For practical applications, this would greatly reduce the parallelism.

3.3 Parallel Groups

However, the SuperCollider node graph can be extended to specify parallelism explicitly. This
approach has been implemented in Supernova, by introducing the concept of parallel groups.
A parallel group behaves similar to a group, with the exception, that group members are not
ordered and therefore can be evaluated in parallel. At the scope of the language, parallel groups
are represented by the ParGroup class, that provides the same interface as the Group class.

The example in Section 3.1 can easily be adapted to use a parallel group instead of a sequential
group, since we assume that myGenerator instances do not depend on each other. Listing 3.2
shows how this would be implemented. In this case, it is as simple as replacing the Group instance
with a ParGroup. The node graph looks fundamentally different though, modeling a directed
acyclic dependency graph, as shown in Figure 3.2.

The strength of this approach is its simplicity. Parallel groups extend the SuperCollider node
graph with a simple concept and integrate well into existing code. It also guarantees backwards
and forwards compatibility with scsynth. Since the ParGroup class has the same interface as the
Group and its only semantic difference is the missing ordering constraint for its child nodes, it is
safe to replace the ParGroup class with the Group class to run code on scsynth. On the scsynth
level, it may even be possible to introduce an OSC handler for the command that is used for
the creation of parallel groups, as an alias for the creation of groups. Backwards compatibility
is trivial, since Supernova does not change any of the semantics of scsynth, but just provides an

21



3. Extending the SuperCollider Graph Model

Synth: myGenerator Synth: myGenerator Synth: myGenerator Synth: myGenerator

Synth: myFxSynth: PeakMeterSynth: PeakMeter Synth: PeakMeter Synth: PeakMater

Synth: PeakMeter

Figure 3.3: Semantically Correct Dependency Graph

Synth: myGenerator Synth: myGenerator Synth: myGenerator Synth: myGenerator

Synth: myFxSynth: PeakMeterSynth: PeakMeter Synth: PeakMeter Synth: PeakMater

Synth: PeakMeter

Figure 3.4: Dependency Graph with Parallel Groups

extension. The concept of parallel groups also fits well into the idea of an explicit handling of
the node graph.

When adding a node to a parallel group, the relations addToHead, addToTail, before and
after only have limited meaning, since the elements of a group are not ordered. Instead, a
node would simply be inserted into the parallel group. To increase the expressive power, a
new relation insert has been introduced. While it is sematically equivalent with addToHead, it
should increase the readability of the code.

3.3.1 Limitations

However there are some limitations of this approach, since it doesn’t provide a true dependency
graph. As an example, the dependency graph in Figure 3.3 will be discussed, which may arise
from a use case where peak meters are run after each synth to update the VU meters of a GUI.

To formulate this use case with parallel groups, the peak meters for the generator synths
could be grouped with the effect synth as shown in Figure 3.4, introducing a number of rather
unnecessary node dependencies. The peak meter for a single synth doesn’t only depend on this
synth, but on all the other synths in the parallel group. In cases where the different synths
require a different amount of CPU time, the first peak meter is not allowed to start before the
last generating synth finishes.

22



3.4. Proposed Extension: Satellite Nodes

var fx = Synth.new(\myFx);

4.do {

var synth = Synth.preceding(fx , \myGenerator)

Synth.succeeding(synth , \PeakMeter)

};

Listing 3.3: Using the proposed satellite nodes

3.4 Proposed Extension: Satellite Nodes

The limitation that has been described above, could be resolved by introducing another extension
to the node graph concept, which we call satellite nodes. Unlike nodes in groups or parallel
groups, which have depedency relations to both predecessors and successors, satellite nodes
have just one dependency relation to a reference node. Satellite successors only depend on their
reference nodes, while each reference node depends on the execution of their satellite predecessors.
Satellite nodes can be nested, so that they can have satellite nodes themselves, but nevertheless,
they will be in the dependency relation with only one node in the tree hierarchy.

With this extension, the example of the previous section, as it is shown in Figure 3.3, could
be implemented with correct dependencies, since the PeakMeter synths could be defined as
successors of the corresponding synths (compare Listing 3.3). Since also the generator synths
can be specified as satellite nodes of the effect synth, this use case can be specified without the
need to use parallel groups.

Unlike parallel groups, satellite nodes do not fit into the node graph concept in an obvious
manner. Since no equivalent concept exists in SuperCollider, emulating them with the available
means of scsynth is rather difficult, mainly because one need to ensure that satellite nodes would
be moved in relation with their reference node. The most important semantic aspects that need
to be defined are addressing and lifetime. In the tree hierarchy, satellite nodes are located on the
same level as their reference nodes, so that they can be addressed by the parent group of their
reference when setting control parameters. The lifetime of a satellite node is governed by their
reference nodes. If a node is freed, all their satellites are freed as well. Likewise, satellite nodes
are paused if their reference nodes are paused.

3.5 Alternative Approach: Freeform Node Graphs

A fundamentally different approach would be to formulate the node graph with explicit depen-
dencies. The approach of using parallel groups is simple, since it easily integrates into the concept
of the SuperCollider node graph and even keeps compatibility. Free node predecessors and suc-
cessors would extend the node graph in a incompatible way, but still keep a node hierarchy,
although it would enable the user to formulate a more fine-grained hierarchy.

It would be possible to completely get rid of the node hierarchy, breaking backwards and
forwards compatibility with scsynth. In the current approach, all nodes have a parent node,
except for the root group that is the root of the node hierarchy. It would be possible to break
this limitation, though. A node graph could be formulated in a way, that all dependencies
between nodes would have to be specified explicitly, and that multiple dependencies may be
possible. In all current approaches, it is not possible to specify a dependency that node A should
be evaluated after node B, but before node C, except by using a (sequential) group. If these
node were ‘free nodes’, it would be possible to specify their dependency explicitly. While this
at first seems to be appealing, it would introduce quite a number of problems. If dependencies

23



3. Extending the SuperCollider Graph Model

can be specified explicitly, it would easily be possible to introduce cycles into the dependency
graph, which would not be allowed, since the dependency graph should by definition by acyclic.
At the scope of the language, an additional functionality would have to be developed, to specify
both node positions (in groups) and node dependencies. This would significantly increase the
complexity of formulating node graphs.

While a freeform node graph would be of theoretical interest, since it would reduce the number
of node dependencies that limit parallelism to a minimum, the complexity of its formulation and
lack of node hierarchy would make it difficult to introduce it into the SuperCollider system.

24



Chapter 4

The Implementation of Supernova

Taking any kind of lock even a spinlock is a no-no on a real time thread such as the
CoreAudio I/O thread. You then have no guarantee that you will meet your deadline,
and if you take too long the Mac OS X scheduler will degrade your priority

James McCartney [McC09]

Supernova is designed as replacement for the SuperCollider server scsynth. This Chapter cov-
ers the important aspects of its implementation. A discussion of the real-time aspects of the
implementation is done in Section 4.1. The next Section describes the node graph and DSP
queue subsystem, which is the main contribution of this master thesis. Section 4.3 explains the
API extensions for the SuperCollider unit generator interface. The last Section, 4.4, describes
the concepts of a generic SIMD library, that is not directly part of Supernova, but has been
developed as a side project and is heavily used by SuperCollider’s unit generators.

4.1 Parallelism in Low-Latency Soft Real-Time Systems

The usual goal when parallelizing an application it to increase its throughput. However, com-
monly used techniques like pipelining introduce a trade-off between throughput and latency.
Computer Music Systems have special requirements, since they are working in soft real-time
contexts with demands for low worst-case latencies. Therefore they have specific demands for
hardware, operating system and software design.

4.1.1 Real-Time Audio Threads, Wakeup Latency

The architecture of Supernova heavily relies on a low wakeup latency of high-priority threads.
The wakeup latency is defined as time interval between signaling and the execution of a thread.
In the beginning of each audio callback, the helper threads need to be signaled in order to work
on the job queue. For a useful application, the wakeup latency needs to be significantly lower
than the duration of one block (1.3 ms for 64 samples at 48000Hz).

Real-Time Preemption Kernel Patches

For several years, there has been a set of real-time preemption patches for the linux kernel,
maintained mainly by Ingo Molnar and Thomas Gleixner, implementing features which reduce
the latency of the kernel. The patchset is slowly being merged into the mainline kernel. The
real-time preemption patches rely mainly on the following techniques to reduce the latency:

25



4. The Implementation of Supernova

Sleeping Spinlocks
Spinlocks are commonly used to synchronize data structures in the linux kernel. Many
of these spinlocks are converted to mutexes. Acquiring a lock may preempt the calling
thread, and also the guarded critical sections may be preempted. An additional API for
‘real’ spinlocks (raw spinlock) has been introduced in order to provide non-preemptible
critical sections.

Priority Inheritance
Priority inversion happens, if a low-priority thread holds a shared resource, that is required
by a high-priority thread. In this case, the high-priority thread is blocked until the low-
priority thread releases the resource, reducing its priority effectively to the priority of the
low-priority thread. To avoid this behavior, the RT Preemtion patches implement Priority
Inheritance. The priority of the low-priority thread is raised to the value of the high-priority
thread, until it releases the shared resource.

Threaded Interrupts
The soft interrupt handlers are converted to preemptible kernel threads. It is possible to
assign priorities to these interrupt handler threads which may be lower than the priorities
of user-space threads which are running with a real-time scheduling policy.

Wakeup Latency of Real-Time Threads

The latency of real-time threads is mainly dominated by hardware effects. The most important
ones are [Boh09]:

System Management Interrupts (SMI)
System Management Interrupts are generated by the hardware. They have the highest
interrupt priority of the system and may consume several hundred microseconds, and are
not visible to the operating system. The SMI code is stored in the BIOS and used for
system-specific operations such as power management (like CPU frequency scaling or fan
control), hardware emulation (e.g. emulation of PS/2 mice or keyboards from USB devices)
or error handling (memory/chipset errors, thermal protection).

DMA Bus Mastering
DMA devices can cause bus mastering events, which may introduce CPU stalls of many
microseconds. Like SMIs, this is a hardware-specific issue, unrelated to the operating
system.

CPU scaling
Modern CPUs can change their clock frequency and core voltage on the fly. When us-
ing a scaling governor that dynamically changes the CPU speed, additional latencies are
introduced.

Beside hardware effects, there are some issues related to the operating system that introduce
additional latencies. For a long time, the biggest issue with the Linux kernel is the Big Kernel
Lock (BKL), a global spinlock, that is used by different subsystems and can therefore introduce
large latencies. The BKL was slowly removed from the linux kernel, but it hasn’t been completely
removed before version 2.6.39, which is expected to be released in summer 2011.

The wakeup latency can be measured with the program ‘svsematest’, testing the latency
of SYSV semaphores, which is available from the RT-tests repository. My personal reference
machine, an Intel Core i7 920, can achieve worst-case scheduling latencies of 12 µs with kernel

26



4.1. Parallelism in Low-Latency Soft Real-Time Systems

2.6.33-rt4, if power management, frequency scaling and simultaneous multithreading are disabled,
with an average of 2 µs. Enabling power management and CPU scaling, the worst-case scheduling
latency raises to about 200 µs. Enabling SMT, it raises to about 250 µs. My second machine,
a Thinkpad T60 laptop with an Intel Core2, can be tuned to just below 100 µs. For MacOSX,
Letz et al [LOF05] suggests a worst-case scheduling latency of between 200 and 250 µs.

4.1.2 Memory Management

For user-space applications, dynamic memory management is an important issue, since a real-
time thread may be preempted, because malloc is usually not implemented in a lock-free manner
and may issue system calls to allocate memory from the operating system. There are several
publications about concurrent memory allocators [BMBW00, SAN06, DG02, GM], even two
about lock-free allocators [Mic04, GPT05], but these still have the need to directly allocate
memory from the operating system, so they are not necessarily suited for real-time applications.

Remy Boehmer [Boh09] suggests that dynamic memory management of real-time applications
could be achieved by tuning the GLIBC implementation of malloc, so that it neither allocates
nor frees memory from/to the operating system. Since the malloc implementation of GLIBC is
not lock-free, this approach is not suitable for multi-threaded real-time applications, though.

There is one publication about TLSF [MRCR04], a real-time safe memory allocator, which
has a bounded response time of O(1), using a pre-allocated memory pool. Since it uses a pre-
allocated memory pool, it doesn’t need to dynamically allocate memory from the operating
system, but this comes at the cost that one needs to allocate all required memory in advance.
The main drawback of TLSF is, that it is designed as a single-threaded memory allocator.

Supernova makes heavy use of memory pools, managed by TLSF. Since the DSP helper
threads don’t need to allocate memory, it is safe to use one memory pool for real-time memory,
that is accessed only by the main DSP thread. In certain use cases, data needs to be transferred
from the real-time thread to a non real-time thread, though. In these cases, the memory is not
directly freed to the memory pool, but pushed to a lock-free free-list that is accessed from the
real-time thread. Using this indirection, the memory pool is only accessed from the real-time
thread. This comes at the cost of at least two additional compare-and-exchange instructions per
freed object (at least one in the non real-time and one in the real-time thread).

Beside memory allocation, page faults are a second source of memory-related latencies [Boh09].
There are major page faults, which require the operating system to load a swapped page from
a hard disk, causing long latencies, and minor page faults, that are caused, when the requested
page can be mapped without IO access. This is mainly the case with freshly allocated pages, but
could also happen if the process tries to write to a copy-on-write page. Major page faults can
be avoided by locking the pages of a process to physical RAM using operating-system specific
system calls. On POSIX-compliant systems, the mlock and mlockall functions may be used to
achieve this. Minor page faults cannot be avoided, but it is possible to avoid them during real-
time critical sections of a program by writing some data to the pages before they are accessed
from the real-time context.

4.1.3 Synchronization Primitives

In general, real-time threads should not use any blocking synchronization primitives. For years
audio applications have been designed in a way. that they don’t wait for locks in the audio
threads. Systems like Pure Data that use a global system lock have been considered as not real-
time safe. Concurrent real-time applications can use blocking locks under certain constraints,

27



4. The Implementation of Supernova

though. The real-time preemption patches implement priority inheritance to reduce latencies,
introduced by priority inversion.

For computer music applications, the wakeup latency is already quite significant, so the inter-
action with the process scheduler of the operating system should be avoided. For synchronization
between real-time threads, spin-locks can be used under certain constraints:

� No synchronized thread is preempted

� Locks are acquired very rarely

� The guarded sections are small (busy waiting is not very expensive)

The first constraint would imply that the synchronized threads have a similar (possibly real-
time) priority and that the number of synchronized threads does not exceed the number of CPU
cores. It could also be achieved by pinning the threads to different physical CPUs. The second
condition can be relaxed, if reader-writer spinlocks are used and write access is acquired very
rarely.

If possible, lock-free data structures should be used to avoid locks completely. During the
development of Supernova we have implemented several lock-free data structures. These data
structures have been submitted for inclusion in the Boost C++ libraries and will undergo a peer
review in Summer 20111. In Supernova, several lock-free stacks and queues are used for passing
objects between real-time and non real-time threads and for synchronizing real-time threads.

4.1.4 Real-Time Safe C++

C++ is a decent choice for implementing real-time applications, if certain care is taken, when
using the language. In the standardization process of the new revision C++0X, a technical
report on the performance of C++ [Gol06] has been published, giving a detailed timing analysis
of different language features. The main language-specific problems for real-time systems are
related to run-time type information (RTTI) and exception handling. When using the RTTI for
a down-cast or cross-cast via dynamic cast, the execution time depends on the position of source
and destination classes in the class hierarchy, so it is not possible to define a general rule for
the worst-case execution time. Exception handling itself introduces a small run-time overhead.
The execution time analysis of exception handling depends on the implementation of exceptions,
which may vary among different compilers. Since computer music systems are not hard but soft
real-time systems exceptions can be treated as cases, where the deadline may be missed.

The memory management of the Standard Template Library (STL) may cause bigger prob-
lems when implementing real-time systems in C++. While the impact of dynamic memory
management on real-time systems in general have already been discussed in Section 4.1.2, the
semantics of C++ allocators make it rather difficult to solve the issue by using memory pools.
C++ allocators define an interface, how containers allocate and free memory. All STL containers
can be configured at compile-time to use a specific class as its allocator. Instances of allocator
classes are defined to be state-less: this means that a memory chunk that is allocated from one
instance may be freed to another instance. This implies that one needs to implement a new class
for each memory pool that one wants to use as a specific memory pool. Implementing thread-local
memory pools with allocators is therefore rather difficult. Fortunately, there is boost.container,
an alternative implementation of STL-style containers, that support stateful allocators, which is
queued for review to be included in the boost library.

1The review of this proposed boost.lockfree library is partially funded by Google Inc. as part of the Google
Summer of Code 2011.

28



4.2. Dsp Thread Subsystem

Supernova tries to overcome this limitation by providing one memory pool that is only used
by containers of the main audio thread. STL containers are not passed between non real-time
and real-time threads, and the real-time helper threads do not allocate any memory at all.

4.2 Dsp Thread Subsystem

The dsp thread subsystem is the heart of Supernova and the part that is fundamentally different
from the traditional SuperCollider server scsynth. The architecture itself is rather simple, the
tricky part is the real-time safe implementation. Unlike scsynth, Supernova distinguishes between
a representation of the node graph and the dsp queue.

4.2.1 Node Graph

The server contains a representation of the SuperCollider node graph, as described in Section 3.1.
The node graph usually has no client-side representation, but the client uses OSC commands to
query and modify the server. It is implemented as recursive data structure with a (sequential)
group as root node and synths, groups and parallel groups as children. The abstract group

class, from which both the group and the parallel group class are derived, manages its children
by using two linked lists, a list of its child nodes and a list of its child groups. For sequential
groups, both lists form a skip-list, improving the performance in some parts of the algorithm for
generating the dsp queue.

4.2.2 Dsp Queue

In scsynth, the node graph can be used directly for the audio synthesis, since it can efficiently be
iterated. This does not apply for the node graph in Supernova, because of its notion of parallel
groups. Instead, the node graph is converted to a dsp queue, basically a compact representation
of the node graph, that is suited for driving Supernova’s dsp thread interpreter. In the queue
representation, the notion of synths and groups does not exist any more, but is replaced by dsp
queue items. The dsp queue is treated as a coarse-grained graph (compare Section 2.2.1),
which is scheduled with an algorithm similar to the one by Letz et al [LOF05]. Each queue item
maintains an atomic activation count and a list of successor queue items. The queue class
itself contains a list of references to all queue items and a list of initially runnable items. After
a queue item is executed, the activation count of each successor is decremented, and it if drops
to zero, the item is scheduled for execution (compare Algorithm 4.1).

Usually this is done by adding the queue item to a lock-free stack. In order to reduce the
contention of this stack, the first element is directly selected to be the next item to be evaluated
by the calling thread. This avoids at least two compare-and-exchange instructions.

Algorithm 4.1 Run Dsp Queue Item

Evaluate Queue Item
for all i in successors do
i.activation count← i.activation count− 1
if i.activation count = 0 then

add i to scheduler queue
end if

end for

29



4. The Implementation of Supernova

Dsp Queue Generation

The dsp queue is generated by traversing the node hierarchy in reverse, starting at the root
group. Child groups are traversed recursively. The queue generation for parallel groups and for
sequential groups differs because of their different semantics. For parallel groups, a dsp queue
node is created for each direct child synth. If parallel groups contain other groups, they are
traversed recursively, ensuring the correct list of successor jobs. For sequential groups, the queue
nodes are optimized in a few ways to combine various synths into a single queue node to avoid
the scheduling overhead for sequential synths.

Since the dsp queue generation is done synchronously to the audio thread, it is required to be
implemented in a very efficient manner to avoid audio dropouts. In order to achieve this, several
optimizations have been introduced. First of all, the number of dynamic memory allocations
was reduced to a minimum. The algorithm needs to allocate some memory from the real-time
memory pool, but the number of allocations has been reduced by allocating a memory chunk
that is big enough to hold the memory for all queue nodes.

4.2.3 Dsp Threads

The dsp queue is interpreted by several dsp threads: the main audio thread, which is managed
by the audio driver backend, and a number of helper threads, that are woken when the backend
triggers the main audio thread. The total number of audio threads is limited by the number of
physical CPUs and threads are pinned to different CPUs.

Algorithm 4.2 shows the behavior of the main dsp thread. When called, it dispatches call-
backs, e.g. to handle OSC commands, wakes the dsp helper threads and adds all initially runnable
queue items to the lock-free stack. The dsp threads then poll the stack of runnable items until
all items have been executed (compare Algorithm 4.3).

This approach may cause busy waiting, if there are fewer items to be processed in parallel than
available processors. This behavior has been implemented because of the overhead in wakeup
latency. If the wakeup latency would drop reliably below 10 to 20 microseconds, semaphores
could be used to put real-time threads to sleep, to avoid busy waiting.

Algorithm 4.2 Main Audio Thread

dispatch callbacks (handle OSC commands, etc)
dispatch scheduled OSC messages
wake helper threads
add initially runnable jobs to scheduler queue
while some queue items are remaining do

poll scheduler queue
if got queue item then

run queue item
end if

end while

4.3 Extending the SuperCollider Plugin Interface

SuperCollider bundles a huge number of unit generators for all kinds of applications: simple
building blocks for audio synthesis like oscillators, filters, sampling ugens, more complex ones
like reverbs or frequency domain processors and even some highly specialized machine-listening

30



4.3. Extending the SuperCollider Plugin Interface

Algorithm 4.3 Audio Helper Threads

while some queue items are remaining do
poll scheduler queue
if got queue item then

run queue item
end if

end while

void In_next_a(IOUnit *unit , int inNumSamples)

{

[...]

for (int i=0; i<numChannels; ++i, in += bufLength) {

int32 busChannel = (int32)fbusChannel + i;

ACQUIRE_BUS_AUDIO_SHARED(busChannel );

if (touched[i] == bufCounter)

Copy(inNumSamples , OUT(i), in);

else

Fill(inNumSamples , OUT(i), 0.f);

RELEASE_BUS_AUDIO_SHARED(busChannel );

}

}

Listing 4.1: Using the unit generator API extension

ugens. There is also the sc3-plugins project2, a repository of 3rd-party unit generators that are
contributed by various people. Some of these may eventually be included in the main SuperCol-
lider distribution.

The unit generators are dynamically loaded plugins, which are loaded via a basic C-style
interface when the synthesis server is launched. When a plugin is loaded, the contained unit gen-
erators are registered in the server application by storing function pointers to ugen constructor
and destructor functions. The actual ugen processing function is then selected in this constructor
function at the time of synth creation. The server passes a struct of function pointers to the
plugin, which is used to call functions of the server from within the plugin code. This design
decision helps a lot when trying to load SuperCollider ugens into another application, by intro-
ducing a run-time overhead of a pointer indirection for each function call from the plugin code
into the host.

Beside this interface table, there is a global singleton World struct, containing all the run-time
information that is accessible from the unit generator, like sampling rate, the buffers used for
storing buffers and busses, random number generator and the like. A pointer to this struct is
stored in every unit generator instance.

The only difference in the ugen API between scsynth and Supernova is the requirement for
resource synchronization. The resources that need to be guarded are busses and buffers, which
is done by some custom reader-writer spinlocks. To implement this, two structs need to be
changed. The World struct and the SndBuf struct, containing the information of sample buffers,
need to be extended to include a reader-writer spinlocks for each audio-rate busses and sample
buffer. control-rate busses don’t need to be synchronized, since they are written atomically and

2the project’s website is available at http://sc3-plugins.sourceforge.net/

31

http://sc3-plugins.sourceforge.net/


4. The Implementation of Supernova

ACQUIRE BUS AUDIO(INDEX) Acquire writer-lock for audio bus
RELEASE BUS AUDIO(INDEX) Release writer-lock for audio bus
ACQUIRE BUS AUDIO SHARED(INDEX) Acquire reader-lock for audio bus
RELEASE BUS AUDIO SHARED(INDEX) Release reader-lock for audio bus
ACQUIRE SNDBUF(INDEX) Acquire writer-lock for buffer
RELEASE SNDBUF(INDEX) Release writer-lock for buffer
ACQUIRE SNDBUF SHARED(INDEX) Acquire reader-lock for buffer
RELEASE SNDBUF SHARED(INDEX) Release reader-lock for buffer
LOCK SNDBUF(INDEX) Create RAII-style writer lock object for buffer
LOCK SNDBUF SHARED(INDEX) Create RAII-style reader lock object for buffer
LOCK SNDBUF2(INDEX1, INDEX2) Create RAII-style writer lock object for 2

buffers
LOCK SNDBUF2 SHARED(INDEX1, INDEX2) Create RAII-style reader lock object for 2

buffers
LOCK SNDBUF2(INDEX1, INDEX2) Create RAII-style writer lock object for 2

buffers
LOCK SNDBUF2 SHARED EXCLUSIVE(INDEX1, INDEX2) Create RAII-style lock object for 2 buffers, cre-

ating a reader-lock for the first and a writer
lock for the second buffer. Deadlock safe.

LOCK SNDBUF2 EXCLUSIVE SHARED(INDEX1, INDEX2) Create RAII-style lock object for 2 buffers, cre-
ating a writer-lock for the first and a reader
lock for the second buffer. Deadlock safe.

Table 4.1: Unit Generator API Extension Macros

therefore cannot contain inconsistent data.
Because of the limited API changes, unit generators that are compiled for SuperCollider are

binary compatible with Supernova, unless they access audio busses or signal buffers. The number
of unit generators that access audio-rate busses is quite limited. But there are various ugens that
access signal buffers like sampling or delay ugens or wavetable oscillators. Also the phase vocoder
ugens use signal buffers for storing spectral frames.

In order to avoid deadlocks while resource locking, two locking policies need to be followed.
First, a unit generator is only allowed to lock one type of resource. This rule is rather trivial,
since there does not seem to be a single unit generator that is accessing both busses and buffers.
The second policy introduces a locking hierarchy. If a unit generator needs to lock multiple
resources simultaneously, it should acquire the resources in ascending order of their indices, in
order to avoid circular wait conditions.

Depending on the use case, the contention may be reduced by formulating the graph accord-
ingly. Instead of playing with several different synths to one summing bus, each synth could play
to a separate bus, which could be summed by another synth.

The resource locking code is implemented with several C preprocessor macros. The use of
these macros makes it easy to conditionally enable the locking code in order to compile the unit
generators for Supernova or to disable them for scsynth. Listing 4.1 shows the modified versions
of the In.ar unit generator. A reader-lock of an audio bus is acquired and released using the
macros ACQUIRE BUS AUDIO SHARED and RELEASE BUS AUDIO SHARED. Table 4.1 shows a full list
of all API extension macros.

The API extension and the modified unit generators have already been merged into the
SuperCollider source.

32



4.4. Nova SIMD

4.4 Nova SIMD

During the development of Supernova, a generic SIMD framework was developed. It is based on
code written for my former project Nova [Ble08], but has been reimplemented from scratch in a
generic way using C++ templates. This library has been integrated into SuperCollider, speeding
up several vectorizable operations.

The major problem when trying to use SIMD instructions is portability. Neither C nor C++
expose a SIMD interface as part of the language. The GCC compiler provides a vector extension
for C, but its interface is rather limited, supporting just simple arithmetic and bitwise operators.
In particular, it is lacking support for element-wise compare operators, which are required for
branch elimination. In order to make use of SIMD instructions, one would have to use libraries
like liboil, compiler-specific intrinsics or assembler code to make use of the SIMD hardware. These
days, the main SIMD instruction set is the family of Streaming SIMD Extensions (SSE)
of Intel architectures IA32 and x86-64. Altivec, an extension to the PowerPC instruction set,
has been widely used in Apple’s personal computers, but since Apple’s transition to Intel CPUs,
Altivec instructions have lost their importance for consumer applications. Future Intel CPUs
will introduce a new instruction set extension called Advanced Vector Extension (AVX),
doubling the width of SIMD registers from 128 to 256 bit. Since the SSE instruction set has
been continuously extended, there are some practical problems when distributing programs in
binary form. For full compatibility with old CPUs, SSE instructions should not be used at all.
For x86-64, one can assume that all CPUs support the SSE and SSE2 instruction sets. The only
possibility to make use of all instruction set extensions by keeping compatibility with old CPUs
would be to introduce a run-time dispatching. However, depending on the application, it may be
difficult to implement. Some recent ARM CPUs support the NEON instruction set, providing
SIMD instructions for integer and single-precision floating point types.

The only aspect that all SIMD instructions have in common, is that they process multiple
data in one instruction. The number of data per instruction depends on the instruction set and
the data type. The SSE instruction set family for example provides 128-bit registers, which can
contain 2 double-precision floating point numbers, 4 single-precision floating point numbers or
32-bit integers, 8 16-bit integers or 16 8-bit integers.

4.4.1 The vec Class

The goal of the Nova SIMD framework is a generic API that can be used as building block for the
implementation of vectorized functions. It is built upon one template vec class, which represents
one SIMD vector. Using template specialization, the class can be implemented for specific
instruction sets. The basic synopsis can be found in Listing 4.2. Besides basic functions for
initialization, memory loads and stores and element-wise access, it provides two static members,
that help when implementing generic algorithms with this class. The size member specifies
the number of elements per SIMD vector and objects per cacheline gives a hint, how many
elements would fit typically fit into a single cache line. These two static members make it easy
to formulate a high-level SIMD algorithm by still making use of hardware-specific information.
The algorithm itself can make use of features which may be provided by some instruction sets,
but would have to be emulated on others.

The vec class is currently implemented with the SSE and SSE2 instruction sets for single-
and double-precision floating point numbers. Support for NEON is currently under development.

33



4. The Implementation of Supernova

template <typename float_type >

class vec

{

public:

static const int size;

static const int objects_per_cacheline;

vec(void);

explicit vec(float_type f);

vec(vec const & rhs);

void load(const float_type * data);

void load_first(const float_type * data);

void load_aligned(const float_type * data);

void store(float_type * dest) const;

void store_aligned(float_type * dest) const;

void store_aligned_stream(float_type * dest) const;

void clear(void);

void set(std:: size_t index , float_type value );

void set_vec(float_type value );

float_type get (std:: size_t index);

};

Listing 4.2: Basic interface of Nova SIMD’s vec class

4.4.2 Nova SIMD algorithms

On top of this vec class, several algorithms have been implemented, starting from simple arith-
metic vector functions, functions for mathematical operations, but also algorithms that are spe-
cific for audio signal processing, like for peak metering or unit conversions.

The mathematical functions are based on the algorithms that are found in the Cephes math
library [Mos92]. In order to vectorize the algorithms, all branches need to be eliminated. This is
usually done by computing the results for all branches and using bitmasks to select the desired
result. In a similar way, range reduction for the arguments is performed. For some cases, the
coefficients for the approximation polynomials have been refined with Sollya [CJL19]. Listing
4.3 shows an example how the vec class can be used for implementing a vectorized tanh function
for single-precision floating point numbers. While all approximation polynomials are currently
computed with Horner’s scheme, it may be interesting to provide an alternative implementation
using Estrin’s scheme, which should make better use of the instruction-level parallelism on out-
of-order CPUs.

34



4.4. Nova SIMD

template <typename VecType >

inline VecType vec_tanh_float(VecType const & arg)

{

const VecType sign_arg = arg & VecType :: gen_sign_mask ();

const VecType abs_arg = arg ^ sign_arg;

const VecType one = VecType :: gen_one ();

const VecType two (2);

const VecType maxlogf_2 (22);

const VecType limit_small (0.625f);

/* large values */

const VecType abs_big = mask_gt(abs_arg , maxlogf_2 );

const VecType result_limit_abs = one;

/* small values */

const VecType f1 ( -5.70498872745e-3);

const VecType f2( 2.06390887954e-2);

const VecType f3 ( -5.37397155531e-2);

const VecType f4( 1.33314422036e-1);

const VecType f5 ( -3.33332819422e-1);

const VecType arg_sqr = abs_arg * abs_arg;

const VecType result_small = ((((f1 * arg_sqr

+ f2) * arg_sqr

+ f3) * arg_sqr

+ f4) * arg_sqr

+ f5) * arg_sqr * arg

+ arg;

const VecType abs_small = mask_lt(abs_arg , limit_small );

/* medium values */

const VecType result_medium_abs = one -

two / (exp(abs_arg + abs_arg) + one);

/* select from large and medium branches and set sign */

const VecType result_lm_abs = select(result_medium_abs ,

result_limit_abs ,

abs_big );

const VecType result_lm = result_lm_abs | sign_arg;

const VecType result = select(result_lm , result_small , abs_small );

return result;

}

Listing 4.3: Using the vec class to implement tanhf

35





Chapter 5

Experimental Results

This chapter discusses the performance results that can be achieved by using Supernova instead of
scsynth. When evaluating the performance of Supernova, the interesting aspect is the worst-case
execution time of signal processing engine. The signal processing engine is triggered once for each
signal vector. For low latency applications, the execution time for this operation should never
exceed the time that this signal vector represents (for 64 samples at 48000 kHz, this would be
1.3 ms), otherwise the deadline for delivering audio data to the backend would be missed. Some
audio backends compute multiple control rate blocks during one backend tick. While increasing
the latency of the audio signal, this reduces some overhead in the backend. For Supernova, this
relaxes the deadline for control rate ticks. Because all control rate ticks of a backend tick need
to be evaluated before the deadline of the backend tick, some deadline misses for control rate
ticks can be tolerated.

5.1 Experimental Setup

The tests were carried out on an Intel Core i7 920 quad-core machine, running Linux, that was
tuned for real-time performance (compare with section 4.1.1). The benchmarks themselves have
been done by measuring time differences between clock_gettime system calls. For running the
benchmarks, the clocksource was configured to use Time Stamp Counters (TSC) [Intb]. Since
CPU frequency scaling has been disabled, they provide accurate values.

The measured durations are sampled and stored in a histogram with nanosecond accuracy.
Compared to simple throughput benchmarks, the use of histograms has certain advantages. In
particular, the histograms show not only the average-case, but also the worst-case behavior,
so they can be used to identify latency hotspots. Some other interesting information can be
obtained by examining the distribution of the histograms.

5.2 Engine Benchmarks

The first part of the benchmarks focuses on the scalability of the engine. It is impossible to pro-
vide reasonable benchmarks for each possible use case of Supernova. The benchmarks therefore
concentrate on different use cases that stress different parts of the implementation.

For running the benchmarks, two synths with different CPU costs are used (see Listing 5.1).
They are based on the FSinOsc unit generator, which implements a sine wave oscillator via a
ringing filter. Because its CPU costs do not depend on its argument or its internal state, it
is a suitable unit generator for benchmarking the engine. The lightweight synth instantiates 4

37



5. Experimental Results

SynthDef (\small , {|out|

var sig = FSinOsc.ar (440!4); // generate 4 Fast Sine Oscillators

Out.ar(out , sig) // write a one -channel mixdown to a bus

}). add;

SynthDef (\big , {|out|

var sig = FSinOsc.ar (440!128); // generate 128 Fast Sine Oscillators

Out.ar(out , sig) // write a one -channel mixdown to a bus

}). add;

Listing 5.1: Synth used for benchmarks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600 700

F
re

q
u
en

cy

Computation Time for a Single Signal Block in Microseconds

Parallel Group, 1 Thread
Parallel Group, 2 Threads
Parallel Group, 3 Threads

Parallel Group, 4 Threads
Sequential Group

Figure 5.1: Execution Time Histogram, 256 Lightweight Synths (No Contention)

FSinOsc ugens, the heavyweight synth uses 128. The outputs of the FSinOsc ugens are mixed
to a single channel and written to a bus which can be specified as synth control argument.

5.2.1 Single Parallel Group

For the first benchmark, 256 lightweight synths are run in a single parallel group. In this use
case, the engine is mainly stressed when nodes are removed from the scheduler queue. This
benchmark was run with two different settings. The results shown in Figure 5.1 are obtained
when each synth is writing to a separate bus, while Figure 5.2 shows the results when writing to
the same bus, which increases the contention. In this use case, the increased contention does not
show a significant effect, though. While the measured difference of worst-case execution times
has a maximum of 3 microseconds, the average-case execution time is even slightly better for the
high-contention use case. This is probably because of better memory locality.

Figure 5.3 shows the result of a similar use case, but with 16 heavyweight synths instead of
256 lightweight ones.

38



5.2. Engine Benchmarks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600 700

F
re

q
u
en

cy

Computation Time for a Single Signal Block in Microseconds

Parallel Group, 1 Thread
Parallel Group, 2 Threads
Parallel Group, 3 Threads

Parallel Group, 4 Threads
Sequential Group

Figure 5.2: Execution Time Histogram, 256 Lightweight Synths (High Contention)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000 1200

F
re

q
u
en

cy

Computation Time for a Single Signal Block in Microseconds

Parallel Group, 1 Thread
Parallel Group, 2 Threads
Parallel Group, 3 Threads

Parallel Group, 4 Threads
Sequential Group

Figure 5.3: 16 Heavyweight Synths

39



5. Experimental Results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300 350 400

F
re

q
u
en

cy

Computation Time for a Single Signal Block in Microseconds

Parallel Group, 1 Thread
Parallel Group, 2 Threads
Parallel Group, 3 Threads

Parallel Group, 4 Threads
Sequential Group

Figure 5.4: Execution Time Histogram, 2 Parallel Groups with Lightweight Synths

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600 700

F
re

q
u
en

cy

Computation Time for a Single Signal Block in Microseconds

Parallel Group, 1 Thread
Parallel Group, 2 Threads
Parallel Group, 3 Threads

Parallel Group, 4 Threads
Sequential Group

Figure 5.5: Execution Time Histogram, 2 Parallel Groups with Heavyweight Synths

5.2.2 Sequential Parallel Groups

To measure the performance impact of group traversal, a second use case was evaluated, based
on two sequential parallel groups. In the first case, each parallel group contained 64 small synths,
in the second case 4 big synths. The benchmark results can be seen in Figures 5.4 and 5.5.

These test cases stress a different part of the Supernova engine than the earlier test, since
the node activation will add some non-trivial overhead. The node activation algorithm requires
two steps. The first step is decreasing the activation count, the second is adding the node to
the scheduler queue. With two sequential parallel groups each element of the preceeding group
needs to decrease the activation count of each element of the following group. The algorithmic
complexity is therefore quadratic. This explains the performance difference between sequential

40



5.2. Engine Benchmarks

and parallel groups that is seen in the test case with lightweight synths. This effect is fortified
in this benchmark, because all nodes have the same CPU costs, so the access to the activation
counts occurs roughly at the same time. The contention will increase the effect of this issue.

In the case of heavyweight synths, the node activation overhead can be neglected. However
the histogram shows a different interesting effect: when running the engine with 3 audio threads,
the performance is similar than when running on 2 audio threads. This can be explained when
the distribution of synths to the worker threads is considered. When 4 synths are distributed
to three groups, first all 3 threads get some work to perform, but after these three synths have
been evaluated, the fourth synth needs to be evaluated, before any other synth will be scheduled.
During this time, the ‘idle’ threads do not perform any work, but busy-wait until there is more
work for them to perform.

While these two cases are perhaps borderline cases, they show some implications that the
user has to deal with when using Supernova.

5.2.3 Speedup & Discussion

The speedup, that one can achieve with parallel groups depends heavily on the use case. If the
dispatching overhead is kept low, nearly a linear speedup can be achieved. However one can
clearly see how some aspects reduce the scalability:

Node Scheduling
When using many small synthesis nodes, the dispatching overhead and scheduler queue
contention adds some measurable overhead. The effect can be seen in the two test cases
of small synths running in parallel. While both perform equally well, the test cases with
big synths scale way better. One possible improvement would be to use work-stealing
scheduler, as proposed by Letz et al [LOF10]. Combining nodes inside a parallel group
may be introduce some further problems, since the performance cost per synthesis node
is neither known nor can it assumed to be constant. While a heuristic could be used to
improve the average-case performance, it is unlikely to improve the worst-case behavior.

Parallel Group Scheduling
Since the node graph is transformed to an internal dependency representation, some bor-
derline cases are rather inefficient. The node scheduling of parallel groups is linear in the
number of scheduling nodes and linear in the number of scheduled nodes. Therefore se-
quential parallel groups impose quite some overhead, that can clearly be observed. This
behavior could be changed from a quadratic to a linear complexity by introducing a barrier
node in between both parallel groups. While adding some constant overhead, this would
probably increase the scalability.

Work Distribution
In order to avoid busy waiting and therefore lost CPU cycles, the scheduler queue needs to
be filled as well as possible. This can be done, if the signal graph is formulated in a way that
tries to keep the scheduler queue filled. The proposed extension of free node predecessors
and successors as described in section 3.4 would make it easier than the current version
using parallel groups.

When examining the results for the worst-case that are shown Figure 5.7, the scalability is
worse than for the average case (Figure 5.6), although there are no substantial differences. The
worst-case execution time is roughly 20 microseconds larger than the average. As this is not only
the case for the multi-threaded, but also for the single-threaded benchmarks, this is probably
due to hardware effects like NMIs.

41



5. Experimental Results

0

0.5

1

1.5

2

2.5

3

3.5

4

group 1 Thread 2 Thread 3 Thread 4 Thread

S
p

ee
d
u
p

1 Parallel Group with Small Synths
1 Parallel Group with Small Synths (Contention)

1 Parallel Group with Big Synths
2 Parallel Groups with Small Synths

2 Parallel Groups with Big Synths

Figure 5.6: Average Case Speedup

0

0.5

1

1.5

2

2.5

3

3.5

4

group 1 Thread 2 Thread 3 Thread 4 Thread

S
p

ee
d
u
p

1 Parallel Group with Small Synths
1 Parallel Group with Small Synths (Contention)

1 Parallel Group with Big Synths
2 Parallel Groups with Small Synths

2 Parallel Groups with Big Synths

Figure 5.7: Worst Case Speedup

5.3 Benchmarking Latency Hotspots

The second part of the benchmarks focuses on the latency hotspots of the Supernova engine. The
latency hotspots occur during the evaluation of asynchronous events, which can be triggered from
received or scheduled OSC commands. Analyzing the source code for the event handlers suggests
that the following operations are likely to introduce latency hotspots:

� synth creation

� node graph manipulation

� dsp queue creation

In order to evaluate the effects of these issues, a slightly different benchmarking setup was
chosen. A parallel group with 32 small synths is followed by parallel group with 4 big synths.
In parallel to this, a group of 4 small synths is followed by a group of 2 big synths. This setup

42



5.3. Benchmarking Latency Hotspots

fork {

var root = ParGroup.new;

var section1 = Group.head(root);

var section2 = Group.head(root);

var section1_head = ParGroup.head(section1 );

var section1_tail = ParGroup.tail(section1 );

var section2_head = Group.head(section2 );

var section2_tail = Group.tail(section2 );

32.do { Synth.head(section1_head , \small); 0.1. wait };

4.do { Synth.head(section1_tail , \big); 0.1. wait };

4.do { Synth.head(section2_head , \small ); 0.1. wait };

2.do { Synth.head(section2_tail , \big); 0.1. wait };

}

Listing 5.2: Graph layout for latency hotspots

increases the load to the dsp queue generation, since it adds some further complexity to the node
graph. The actual code is shown in Listing 5.2. In order to increase the effect of DSP queue
generation, the synth creation messages are throttled to ensure that for every node graph layout
the corresponding DSP queue is actually generated.

5.3.1 Latency of Synth Instantiations

Examining the measured execution times for synth creation, one can clearly see that it is actually
governed by the complexity of the synth. the lightweight synth with just a few unit generators
is faster to instantiate than the heavyweight synth. The costs of instantiating a synths are on
the order of tens of microseconds. The functionality is the same in Supernova and in scsynth,
so scsynth would probably show a similar behavior. Measurements suggest synth instantiation
time of 10 microseconds for the ‘small’ synth and of 30 microseconds for the ‘big’ synth.

5.3.2 Latency of Node Graph Manipulations

Node graph manipulations are a bit different in Supernova and in scsynth. While scsynth or-
ganizes the synthesis nodes in nested linked lists, Supernova maintains a graph structure. The
costs for maintaining the graph structure are barely measurable for this use case, in most cases
the results are below one microsecond, with a measured worse-case of 3 microseconds.

5.3.3 Latency of Dsp Queue Creation

The generation of the dsp queue is the only latency hotspot in Supernova that has no equivalent in
scsynth. The implementation guarantees that it does not happen more than once per control rate
period, though. In the examined use case, the average-case CPU costs are about 4 microseconds
with a worst-case bound of 13 microseconds. While this scales linearly with the size of the node
graph, the costs are still reasonably low.

43



5. Experimental Results

5.3.4 Discussion

The additional latency hotspots for maintaining the node graph and creating the DSP queue
do not seem to have a significant impact on the overall scalability of the Supernova engine.
While being measurable, the costs are reasonably low so they will probably not be significant in
real-world applications.

44



Chapter 6

Related Work

The use of parallelism in computer music systems dates back to the late 1980s and early 1990s,
when audio synthesis was a highly demanding application for the available CPU power. In those
days, some approaches have been pioneered, although the available hardware and synchronization
primitives were less powerful back then. Today we face a different situation. The floating-point
performance of current CPUs is sufficient for many computer music tasks, however the continuous
growth of single-processor performance is coming to an end because of physical constraints in
the manufacturing process of microprocessors [Kis02]. To continuously increase the CPU speed,
processor vendors start focusing on parallel architectures, integrating multiple CPU cores into
one processor.

6.1 Max-like languages

Max-like languages [Puc02] are a family of visual programming environments, using a data-flow
graph to represent both control data and audio signals, which shares some analogy to connecting
modules of an analogue synthesizer. There is no formal definition of the ‘max language’, but
most of the systems share the same concepts, although the library of objects varies.

The first max-like language was Patcher, a system developed by Miller Puckette at IRCAM
(Institut de Recherche et Coordination Acoustique/Musique, Paris) in 1986 for the realization of
Philippe Manoury’s composition “Pluton” [Puc88]. Patcher was able to do MIDI event processing
and to control external audio synthesis hardware. Patcher was rewritten in C and called Max
(named after Max Mathews) during the following year.

IRCAM started to develop the IRCAM Signal Processing Workstation (ISPW) in 1989, a
NeXT computer with an extension board of 2 to 24 Intel i860 coprocessors for real-time signal
processing [Puc91b], running the CPOS operating system, which was specifically written for the
real-time requirements of real-time audio synthesis [Puc91b]. It was the first computer music
system that was built with general-purpose processors, while earlier systems like the Samson
Box [III91] or the 4X [Sch] used special synthesis hardware. The ISPW was running Max as
user interface and control engine for the real-time signal processing engine FTS (Faster Than
Sound). FTS could be controlled by special Max objects, called tilde objects [Puc91a].

In 1996, Miller Puckette started Pure Data (Pd), a new implementation of the original Max,
which was released as open source software under the BSD license [Puc96]. In 1997, Cycling 74,
a San Francisco based company, founded by former IRCAM employee David Zincarelli, extended
Max with a signal processing engine based on Pure Data and released the proprietary Software
Max/MSP, which is available on the Windows and Mac OSX platforms and got widely used
both in computer music and other fields of computer-based arts.

45



6. Related Work

outlet~

osc~

*~ 

line

pack

inlet inlet

dur

inlet

freq_base

inlet

freq_target

vline~

pack 1 100

pack 1 f 100

- 500

pack 0 400 f

t b b b

inlet

volume

f  

f  
f  

+ 100

bang

dbtorms

- 400

Figure 6.1: Pd abstraction for sine sweep

dac~

qlist

r s1

unpack f f f f

t b a

loadbang

t b b

dac~

instrument

unpack f f f f

t b a

r s2

dac~

unpack f f f f

t b a

r s3

instrument instrument

clear, add 0 s1 10000 1000 1100 -12, add 1000 s2 9000 1000

200 -9, add 2500 s3 7500 1000 10000 -18

Figure 6.2: 3 sweeping sine waves with a Pd patch

The “Real Time Systems” group at IRCAM, led by François Déchelle, reengineered the ar-
chitecture of Max/FTS, splitting the engine from the graphical user interface, which was written
from scratch using the Java programming language, and released the new program under the
name jMax [DBdC+98]. It was licensed as GNU Lesser Public License, running under Linux,
Mac OSX and Windows, but never got as widely used as Max/MSP or Pure Data. In 2004 the
IRCAM stopped the development of jMax, although it was revived as a community project by
two former developers in 2008 [dCDM09].

46



6.1. Max-like languages

Programs written in max-like languages are called patches. Patches are written in a visual
programming environment, where graphical objects can be placed on a canvas. These objects can
be interconnected, in order to form the data-flow graphs for audio signals and control messages.
Objects can be written in the max language itself. Patches that are stored in the search path,
can be used as objects in another patch. These patches are called abstractions. Figure 6.1
shows an abstraction written in Pure Data to play a sine sweep. The signal from the output of
the sine wave oscillator osc~ is multiplied with an envelope, generated by the vline~ object.
Figure 6.2 shows, how to use this abstraction in a patch. The inlet and outlet~ objects inside
the abstraction refer to inlets and outlets of the instantiated abstraction in the parent patch.
The trailing ~ is a convention to denote an audio object. In order to play 3 sounds at the same
time, the abstraction needs to be instantiated once for each sound. The qlist object serves as
message sequencer and sending lists to certain receivers at a given time.

6.1.1 Audio Synthesis in Max-like Languages

Max-like languages have no real equivalent to synthdefs and synths. Instead, abstractions can
be used to encapsulate the audio synthesis to small entities. Most systems1 contain a single ugen
graph, that is used by all patches of a running system. When an abstraction is instantiated, its
tilde objects will be added to this graph and the graph will need to be traversed again to build
a sequential list and allocate signal buffers. This adds some significant overhead, which makes
it impossible to change the signal graph in real-time without experiencing audio dropouts. The
example is shown using Pure Data, where abstractions need to be instantiated and voices need
to be allocated manually.

Using the terminology introduced in Section 2.2, signal graphs in max-like languages model a
fine-grained graph. While in theory, they could be parallelized, implicit dependencies introduce
practical problems, making the parallelization hard, if not impossible to implement. Instead,
these systems introduce extensions, providing multi-processor support with some limitations.

6.1.2 FTS

FTS was designed to run on the parallel hardware of the ISPW. The multiprocessor capability
is exposed explicitly to the user, who can assign all tilde objects of a window to run on a certain
processor [Puc91a]. Internally this is achieved by using the pipelining technique described in
Section 2.3. If signals are passed between processors, a latency of one signal block (typically 64
samples) is introduced. Since the processors are assigned statically, an application would have
to be optimized for a certain number of CPUs.

6.1.3 Max/MSP: poly˜

Version 5 of Max/MSP, that has been released in 2008, provides a poly~ object, which makes
it possible to run different instances of one abstraction in separate threads. This way it is only
possible to run instances of the same patch in parallel. With this approach it is not possible to
run multiple different abstractions in parallel. Unfortunately it is not known, if the poly~ object
uses pipelining techniques, introducing additional latency, nor how resource access is managed.

The poly~ object does not introduce a general solution, but can just provide parallelism for
a special use case.

1This applies to Pure Data, that I have studied in great detail. It also seems to apply to other max-like
systems, though.

47



6. Related Work

; define global variables:

sr = 44100 ; audio sample rate

kr = 4410 ; control sample rate

ksmps = 10 ; audio samples per control rate

nchnls = 1 ; number of output channels

instr 1

idur = p3

ifreq_base = p4

ifreq_target = p5

iamp = ampdbfs(p6)

k_sweep line ifreq_base , idur , ifreq_target ; frequency

a_sine oscil iamp , k_sweep , 1 ; sine oscillator

k_env linen 1, 0.1, idur , 0.4 ; envelope

out a_sine * k_env ; output signal

endin

Listing 6.1: Csound Instrument for sine sweep

6.1.4 Pure Data: pd˜

Recent versions of Pure Data provide a pd~ object, that implements a concept similar to the
approach of FTS. The pd~ creates a subpatch, which starts a separate thread in the background
[Puc08]. When data is passed across a pd~ boundary, a latency of one signal block is introduced,
that is common to all implementations using the pipelining technique. Apart from the additional
latency, this approach does not scale well on current computer systems. Since each pd~ object
instantiates a separate process, the worst-case latency for the main Pd process to finish grows
linearly with the number of pd~ instances. This limits its usability when running in low-latency
environments on untuned systems (compare Section 4.1.1). Since child processes are created via
the fork system call, duplicating the main Pd process, page-fault related latencies may occur,
since the child process does not inherit the parent’s memory locks and writing to copy-on-write
pages will cause minor page faults (compare Section 4.1.2).

6.2 Csound

The only “Music N” based language which is still widely used is Csound [Ver07], which was
developed at MIT by Barry L. Vercoe as a successor of Music 360, a “Music N” programm
for IBM 360 computers. It was implemented using the C programming language to increase
the portability. While earlier “Music N” systems were designed as a compiler for sound files,
Real-time Csound, presented in 1990 at ICMC Glasgow [VE90], also was able to generate sounds
in real-time. Csound is currently maintained by John ffitch at the University of Bath and is
still widely used in academic computer music. It became quite common to use it not only as
standalone application, but also with gui front-ends, as LADSPA [LW07] or VST plug-in [Ver07]
or embedded in systems like Max/MSP or Pure Data. Csound is free software, released under
the GNU Lesser General Public License.

In Csound, score and orchestra are written independently, either as two separate files or as one
“Unified Csound File”, using XML-like tags to separate different code sections. The orchestra
file is based on a simple declarative syntax, and defines audio-rate, control-rate and number of

48



6.2. Csound

f1 0 8192 10 1 ; fill table with sine wave

i1 0 10 1000 1100 -12 ; play 3 sweeping notes

i1 1 9 1000 200 -9

i1 2.5 7.5 1000 10000 -18

Listing 6.2: Csound score for playing 3 notes

channels for the resulting output and a list of instruments. An instrument for playing a sweeping
sine (similar to the synthdef in Section 1.2.2 can be found in Listing 6.1. The first letter of
instrument variables are used to specify the rate of the opcode: a denotes audio-rate, k control
rate and i instrument rate.

The score language is based on a list of statements for the generation of wavetables for
wavetable oscillators (F-Statements) and a note list, specifying a note based on instrument
number, start time, note duration and a number of instrument arguments (I-Statements) [Bou00].
Listing 6.2 shows how to write a score with 3 notes and one wave table. Since the score language
is just a list of definitions, its expressive power for algorithmic composition is quite limited.
However it can serve as intermediate language for score descriptions. It is a common technique
to generate Csound scores from other systems for computer assisted compostition like OpenMusic
[ARL+99].

Instruments can share data by using global variables, f-tables (audio buffers) or by using the
so-called ‘zak’ bus system.

6.2.1 Parallelizing Csound

According to John ffitch, there have been several attempts to parallelize Csound [fDB09]. The
main difficulty when parallelizing Csound is to maintain the semantics of the language. The first
attempt of a parallel implementation of Csound dates back to 1989, when an array of about 170
Transputers was targeted [fDB09].

Csound’s original developer Barry Vercoe implemented an “Extended Csound”, targeting
SHARC DSP processors, which didn’t strictly follow the semantics of the Csound language, since
it didn’t support communication between instruments via global variables with the exception of
passing the instrument outputs to a single effect instrument and passing the output of the effect
instrument to a reverberation instrument [ffi09].

In 1997, John Williams and Mark Clement published a paper describing a distributed im-
plementation of Csound. The Csound program was split into a server and a client application,
which is able to split the score file to separate notes and distribute each note to available servers
on the local network [WC97].

Recently, some work has been done to implement a parallel version on Csound 5 [ffi09]. It
follows the idea to create a dependency graph between instruments, in order to maintain the
semantics of the language. In Csound, this is somehow easier to achieve than in SuperCollider,
since the instrument parser has some knowledge about global variables and opcodes. When the
instrument section is parsed, the instruments are annotated by synchronization constraints, like
read or write access to global variables, f-tables or the ‘zak’ bus. In cases where it cannot be
fully determined, instruments are marked as such.

Based on this analysis instruments can be identified, that can be computed in parallel while
keeping the correct semantics. Internally, it uses a database of unit generator costs to estimate the
run-time costs of instruments, so that low-overhead instruments can be clustered and scheduled
as one entity to avoid scheduling overheads. This database provides cost values in CPU cycles for

49



6. Related Work

UGen initialization, costs per control cycle and costs per audio sample. It shares some analogy
to the PTI, proposed by Reiter and Partzsch (compare Section 2.2.2).

Unfortunately, neither ffitch [ffi09] nor Wilson [Wil09] provides a real-time analysis of its
engine. Wilson provides several benchmarks, but they focus on throughput for non real-time
synthesis. In his real-world benchmarks (comparing 5 different scores), only 2 show a significant
speedup when using 2 CPUs instead of one. Using 4 CPUs is always less efficient than using 3
CPUs, which suggests a certain limitation either in the instrument scheduler or the automatic
parallelization. Wilson briefly discusses the real-time performance, but without providing any
quantitative results. ffitch [ffi11] provides some benchmark results of the parallel implementation
with up to 5 threads. His benchmarks only show modest performance gains: while in some cases
the parallel implementation is slightly more efficient than the sequential one, using more threads
is not necessarily more efficient. The best speedup of about 1.3 is achieved with 3 threads, in
many cases (especially for small block sizes) the parallel implementation is even slower than the
sequential one.

While one cannot compare the real-world benchmarks of ffitch and Wilson with the synthetic
benchmarks of the Supernova engine from Chapter 5, one can still assume that the Supernova
engine is way more scalable than the engine of the current version of parallel csound. ffitch
admits that the performance results of csound are “a little disappointing” [ffi11] and suggests
to use higher control rates to be able to get better speedup. But as increasing the control rates
will also increase the audibility of zipper noise2 and decrease the time resolution of the audio
synthesis, this may introduce some further issues.

6.3 Distributed Engines

Several programs are designed to be used in parallel on distributed systems. Since SuperCollider
has a strict separation between language and synthesis engine communicating via OSC, it is
possible to control multiple server instances, possibly running on different computers of a net-
work, from one single sclang client. This is commonly used for many computationally intensive
applications like wave field synthesis. The 192 channel wave field synthesis system of the Game
of Life foundation in Leiden/Netherlands [Negon] is completely written in SuperCollider is using
2 8-core computers, each of them running one 8 instances of scsynth.

The 832 channel WFS system in the large lecture hall at TU Berlin is driven by the distributed
software Wonder [Baa07]. Wonder is a software system of different components, a control unit,
a score playback/recording engine and an audio rendering system for direct rendering of virtual
audio sources and for room simulation. The system consists of one control computer, that is
controlling a cluster of 15 linux computers, each controlling 56 loudspeakers. The communication
is realized using the OSC protocol.

6.4 Faust

Faust is a functional programming language for block diagram composition. Its programs are
textual definitions of signal processing block diagrams. Faust does not work as standalone
program, but is used as code generator, compiling the block diagrams to C++ classes. The
Faust distribution provides wrappers to directly use generated classes as with Jack or ALSA
audio backend and Gtk GUI, as VST or LADSPA plugins, or as objects in Max/MSP, Pure
Data or SuperCollider [GKO06].

2The reason for zipper noise is the quantization of control rate signals

50



6.5. Occam

The Faust compiler includes optimizations for automatic vectorization and parallelization.
The vectorized C++ code is a reorganization of the original C++ code, based on loop unrolling
techniques in order to help the automatic vectorizer of the compiler (see Chapter 2.1.1). The
parallel code generator was originally implemented using the OpenMP API [OLF09], which has
recently been replaced with a custom work-stealing scheduler [LOF10].

According to Orlarey et al, the performance of the OpenMP backend depends heavily on
the implementation. The work-stealing scheduler provides better performance due to reduced
contention. Depending on the type of the dsp algorithm, Orlarey’s benchmarks show some
speedups, but also some performance loss. Unfortunately, the benchmarks focus on throughput.
It would be interesting to see worst-case benchmarks of Faust-generated code.

Some personal discussions with Orlarey and Letz showed, that it may not necessarily be the
best approach for Supernova. The node graphs of Faust and supernova differ in a few ways.
Faust node graphs are fine grained, while Supernova node graphs are coarse grained, so the
overhead that is caused by the scheduler queue contention is a bigger issue in Faust. On the
other hand, the structure of typical Supernova node graph will probably cause the scheduler jobs
to be distributed poorly among the threads.

6.5 Occam

The idea of specifying parallel and sequential parts of a program explicitly has quite some his-
tory in computer science. The concurrent programming language occam [Hyd95] supports the
keywords SEQ and PAR, that are used to specify statements, that should be evaluated sequen-
tially or parallel. occam implements the Communicating Sequential Processes (CSP) concept.
The actual communication between processes is realized via a message passing interface using
channels. Occam was introduced in the early 1980s by Inmos Limited, who eventually designed
the Transputer, a parallel computer system, designed for the CSP concurrency model. This syn-
tax influenced some other implementations of the CSP like the parallel keyword in SuperPascal
[Han94] or Java-style par blocks in ProcessJ [Ped].

SEQ and PAR style syntax shares some analogies with groups and parallel groups. While
they specify how statements in a block are supposed to be evaluated, groups and parallel groups
define how their child nodes will be executed. However the syntax is not related at all and
parallel groups do not implement the CSP.

51





Chapter 7

Conclusion & Future Work

7.1 Conclusion

The combination of SuperCollider with Supernova is the first computer music systems that makes
use of multiprocessor hardware in a generic and scalable way. Since late 2009, I have personally
used it in more than 20 concerts.

Since Supernova is a drop-in replacement for the SuperCollider server scsynth, it can smoothly
be integrated into existing system. After some discussions during the SuperCollider Symposium
2010, the SuperCollider developers agreed to integrate Supernova into the next 3.5 release as
an alternative to scsynth and eventually to completely replace scsynth with Supernova. As a
first step, the required extensions to the unit generator API have already been merged into the
SuperCollider repository.

The parallel audio engine of Supernova provides a combination of features that cannot be
found in any other system:

No Additional Latency
Since Supernova does not rely on pipelining techniques, it does not add any latency to the
audio signal.

Explicit Handling of Parallelism
Supernova does not try to parallelize the existing signal graph automatically, but exposes
the parallelism to the user. This greatly simplifies the implementation, since no resource-
based dependency analysis needs to be executed and avoids the limitation of a dependency
analysis, which would reduce parallelism if the resource access pattern could not be pre-
dicted correctly.

Real-Time Safety
Supernova is optimized for real-time operations. While many other parallel computer music
systems seem to focus on throughput, Supernova is optimized for the worst-case behavior.
Benchmarks suggest that the worst-case behavior is mainly governed by hardware and
operating systems.

Scalability
Supernova is designed for dynamically changing signal graphs and can adapt to the number
of available CPUs. Benchmarks suggest that a considerable speedup can be achieved, if
the user can parallelize his program such that the scheduler queue always contains some
work. Some synthetic benchmarks even show a linear speedup.

53



7. Conclusion & Future Work

Supernova is completely backwards compatible with existing SuperCollider code. Code writ-
ten for SuperCollider will run under Supernova as it would under scsynth. While it won’t benefit
from parallel hardware if run under scsynth, it won’t suffer any performance impact, either. The
extension of ‘parallel groups’, that is implemented in Supernova can be easily emulated with
facilities from scsynth, making the extension also forward compatible. The proposed ‘satellite
nodes’ will not be compatible with scsynth.

The Nova.SIMD framework provides a generic way to utilize data-level parallelism. It provides
an abstract interface that is implemented with different SIMD instruction sets, and provides
many algorithms that are commonly found in computer music systems. While it is not a part
of Supernova itself, it has been included into the SuperCollider distribution in order to speed up
several unit generators.

7.2 Future Work

The implementation of Supernova raised some interesting questions.

DSP Queue Caching
Currently, the dsp queue is completely regenerated whenever the node graph is changed.
Therefore, some optimizations are possible, reducing the worst-case execution time of the
queue generation algorithm. In many cases, some parts of the dsp queue could be cached
and later reused. This would probably affect the worst-case behavior, but may improve
the performance in the average case. Depending on the use case, this could reduce the
probability of queue-generation related audio dropouts.

JIT Compilation of Synthdefs
All current computer music systems build a unit generator graph, which is dispatched by
calling the ugen functions indirectly using function pointers. It would be interesting to
compile synthdefs to native code using JIT compilation techniques, to enable compiler
optimizations that could work across ugen boundaries. As cross-ugen optimizations would
reduce the required memory bandwidth if local data can be stored in registers, this may
increase multiprocessor scalability.

Synchronous Sclang
The current design of SuperCollider is based on the strong separation between audio syn-
thesis and control language. This design has been introduced in the transition from the
commercial SuperCollider 2 to the open source SuperCollider 3. Before that, it was possible
to run the language interpreter synchronous to the audio synthesis. It would be interesting
to re-introduce the process separation by integrating sclang back into the parallel archi-
tecture of Supernova and introduce a facility to run sclang code synchronous to the audio
signal processing.

While these issues are outside the scope of this master’s thesis, they offer some interesting topics
for further research.

54



Bibliography

[ARL+99] Gérard Assayag, Camilo Rueda, Mikael Laurson, Carlos Agon, and Olivier Delerue.
Computer Assisted Composition at Ircam: PatchWork & OpenMusic. Computer
Music Journal, 23(3), 1999.

[Baa07] Marije A. J. Baalman. On Wave Field Synthesis and electro-acoustic music, with a
particular focus on the reproduction of arbitrarily shaped sound sources. PhD thesis,
Technische Universität Berlin, 2007.

[Ble08] Tim Blechmann. nova - A New Computer Music System with a Dataflow Syntax.
Technical report, 2008.

[BMBW00] Emery Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson.
Hoard: a scalable memory allocator for multithreaded applications. ACM SIGPLAN
Notices, 35(11):117–128, 2000.

[Boh09] Remy Bohmer. HOWTO: Build an RT-application. http://rt.wiki.kernel.org/
index.php/HOWTO:_Build_an_RT-application, 2009. [Online, Accessed November
4th, 2009].

[Bou00] Richard Boulanger, editor. The Csound Book: Perspectives in Software Synthesis,
Sound Design, Signal Processing,and Programming. The MIT Press, March 2000.

[CJL19] Sylvain Chevillard, Miaora Joldeş, and Christoph Lauter. Sollya: An Environment
for the Development of Numerical Codes. Mathematical Software–ICMS 2010, pages
28–31, 2919.

[Dan08] Roger B. Dannenberg. Is Music Audio Processing Embarrassingly Parallel? In
Proceedings of the International Computer Music Conference, 2008.

[DBdC+98] François Déchelle, Riccardo Borghesi, Maurizio de Cecco, Enzo Maggi, Joseph B.
Rovan, and Norbert Schnell. Latest evolutions of the FTS real-time engine: typing,
scoping, threading, compiling. In Proceedings of the International Computer Music
Conference, 1998.

[dCDM09] Maurizio de Cecco, François Déchelle, and Enzo Maggi. jMax Phoenix: le jMax nou-
veau est arrivé. In Proceedings of the Linux Audio Conference, 2009.

[Der08] Helmut Dersch. Universal SIMD-Mathlibrary. Technical report, Furtwangen Uni-
versity of Applied Sciences, August 2008.

[DG02] David Dice and Alex Garthwaite. Mostly lock-free malloc. In Proceedings of the 3rd
international symposium on Memory management, page 174. ACM, 2002.

55

http://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application
http://rt.wiki.kernel.org/index.php/HOWTO:_Build_an_RT-application


Bibliography

[Dun92] David Dunn. A History of Electronic Music Pioneers. ders.(Hrsg.), Eigenwelt der
Apparate-Welt.(Katalog), Linz, pages 21–62, 1992.

[fDB09] John ffitch, Richard Dobson, and Russell Bradford. The Imperative for High-
Performance Audio Computing. In Proceedings of the Linux Audio Conference,
pages 73–79, 2009.

[ffi09] John ffitch. Parallel Execution of Csound. In Proceedings of the International Com-
puter Music Conference, 2009.

[ffi11] John ffitch. Running Csound in Parallel. In Proceedings of the Linux Audio Con-
ference 2011, 2011.

[GKO06] Albert Gräf, Stefan Kersten, and Yann Orlarey. DSP Programming with Faust, Q
and SuperCollider. In Proceedings of the Linux Audio Conference, 2006.

[GM] Sanjay Ghemawat and Paul Menage. TCMalloc: Thread-Caching Malloc. http:

//goog-perftools.sourceforge.net/doc/tcmalloc.html.

[Gog] Michael Gogins. Double Blind Listening Tests of Csound 5 Compiled with
Single-Precision and Double-Precision Samples. http://ruccas.org/pub/Gogins/
csoundabx.pdf.

[Gol06] Lois Goldthwaite. Technical report on C++ performance. ISO/IEC PDTR, 18015,
2006.

[GPT05] Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas. Allocating Mem-
ory in a Lock-Free Manner. Algorithms–Esa 2005: 13th Annual European Sympo-
sium, Palma de Mallorca, Spain, October 3-6, 2005: Proceedings, 2005.

[Han94] Per Brinch Hansen. SuperPascal-a publication language for parallel scientific com-
puting. Concurrency: practice and experience, 6(5):461–483, 1994.

[Hyd95] Daniel C. Hyde. Introduction to the programming language Occam. Department of
Computer Science Bucknell University, Lewisburg, 1995.

[III91] Julius O. Smith III. Viewpoints on the History of Digital Synthesis. In Proceedings
of the International Computer Music Conference, pages 1–10, 1991.

[Inta] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual.

[Intb] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual.

[Kis02] Laszlo B. Kish. End of Moore’s law: thermal (noise) death of integration in micro
and nano electronics. Physics Letters A, 305(3-4):144–149, 2002.

[LOF05] Stéphane Letz, Yann Orlarey, and Dominique Fober. Jack audio server for multi-
processor machines. In Proceedings of the International Computer Music Conference,
2005.

[LOF10] Stéphane Letz, Yann Orlarey, and Dominique Fober. Work Stealing Scheduler for
Automatic Parallelization in Faust. In Proceedings of the Linux Audio Conference,
2010.

56

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://ruccas.org/pub/Gogins/csoundabx.pdf
http://ruccas.org/pub/Gogins/csoundabx.pdf


Bibliography

[LW07] Victor Lazzarini and Rory Walsh. Developing LADSPA plugins with Csound. In
Proceedings of the 5th International Linux Audio Conference, pages 30–36, Technical
University Berlin, 2007.

[M+96] James McCartney et al. SuperCollider Manual, 1996.

[Mag06] Thor Magnusson. Affordances and constraints in screen-based musical instruments.
In NordiCHI ’06: Proceedings of the 4th Nordic conference on Human-computer
interaction, pages 441–444, New York, NY, USA, 2006. ACM.

[Man04] Peter Manning. Electronic and computer music. Oxford University Press, USA,
2004.

[McC96] James McCartney. SuperCollider, a new real time synthesis language. In Proceedings
of the International Computer Music Conference, 1996.

[McC02] James McCartney. Rethinking the Computer Music Language: SuperCollider. Com-
puter Music Journal, 26(4):61–68, 2002.

[McC09] James McCartney. Re: Re: supernova v0.1. sc-dev Mailing List, http://article.
gmane.org/gmane.comp.audio.supercollider.devel/21059, 2009.

[Mic04] M. M. Michael. Scalable lock-free dynamic memory allocation. ACM SIGPLAN
Notices, 39(6):35–46, 2004.

[MMM+69] Max V. Mathews, Joan E. Miller, F. R. Moore, John R. Pierce, and J. C. Risset.
The Technology of Computer Music. The MIT Press, 1969.

[Mos92] Steve Moshier. Cephes mathematical library. http://www.netlib.org/cephes/,
1992.

[MRCR04] Miguel Masmano, Ismael Ripoll, Alfons Crespo, and Jorge Real. TLSF: A New
Dynamic Memory Allocator for Real-Time Systems. Real-Time Systems, Euromicro
Conference on, 0:79–86, 2004.

[Nai04] Dorit Naishlos. Autovectorization in GCC. In Proceedings of the 2004 GCC Devel-
opers Summit, pages 105–118, 2004.

[Negon] Miguel Negrão. The challenges and possibilities of real-time Wave Field Synthesis.
In Proceedings of the SuperCollider Symposium, Berlin, Germany, in preparation.

[OH05] Kunle Olukotun and Lance Hammond. The Future of Microprocessors. Queue,
3(7):26–29, 2005.

[OLF08] Yann Orlarey, Stéphane Letz, and Dominique Forber. Multicore Technologies in
Jack and Faust. In Proceedings of the International Computer Music Conference,
2008.

[OLF09] Yann Orlarey, Stéphane Letz, and Dominique Fober. Adding Automatic Paralleliza-
tion to Faust. In Proceedings of the Linux Audio Conference, 2009.

[Ped] Matt Pedersen. ProcessJ. http://www.egr.unlv.edu/~matt/research/

Joccam-content.html. [Online, Accessed July 22th, 2010].

[Puc88] Miller Puckette. The patcher. In Proceedings of the International Computer Music
Conference, pages 420–429, 1988.

57

http://article.gmane.org/gmane.comp.audio.supercollider.devel/21059
http://article.gmane.org/gmane.comp.audio.supercollider.devel/21059
http://www.netlib.org/cephes/
http://www.egr.unlv.edu/~matt/research/Joccam-content.html
http://www.egr.unlv.edu/~matt/research/Joccam-content.html


Bibliography

[Puc91a] Miller Puckette. Combining Event and Signal Processing in the MAX Graphical
Programming Environment. Computer Music Journal, 15(3):68–77, 1991.

[Puc91b] Miller Puckette. FTS: A Real-time Monitor for Multiprocessor Music Synthesis.
Computer Music Journal, 15(3):58–67, 1991.

[Puc96] Miller Puckette. Pure Data: another integrated computer music environment. In
Proc. the Second Intercollege Computer Music Concerts, pages 37–41, 1996.

[Puc02] Miller Puckette. Max at Seventeen. Computer Music Journal, 26(4):31–43, 2002.

[Puc08] Miller Puckette. Thoughts on Parallel Computing for Music. In Proceedings of the
International Computer Music Conference, 2008.

[RP07] Ulrich Reiter and Andreas Partzsch. Multi Core / Multi Thread Processing in Object
Based Real Time Audio Rendering: Approaches and Solutions for an Optimization
Problem. In Audio Engineering Society 122th Convention, 2007.

[SAN06] Scott Schneider, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos. Scal-
able locality-conscious multithreaded memory allocation. In Proceedings of the 5th
international symposium on Memory management, pages 84–94. ACM New York,
NY, USA, 2006.

[Sch] Arie van Schutterhoef. Sogitec 4X. http://knorretje.hku.nl/wiki/Sogitec_4X.
[Online, Accessed October 4th, 2009].

[Sup97] Martin Supper. Elektroakustische Musik und Computermusik: Geschichte, Ästhetik,
Methoden, Systeme. Wolke, 1997.

[VE90] Barry Vercoe and Dan Ellis. Real-Time CSOUND: Software Synthesis with Sensing
and Control. In Proceedings of the International Computer Music Conference, pages
209–211, 1990.

[Ver07] Barry Vercoe. The Canonical Csound Reference Manual Version 5.07, 2007.

[WC97] John Williams and Mark J. Clement. Distributed polyphonic music synthesis. In
Proceedings of the Sixth IEEE International Symposium on High Performance Dis-
tributed Computing, pages 20–29, 1997.

[Wes08] David Wessel. Reinventing Audio and Music Computation for Many-Core Proces-
sors. In Proceedings of the International Computer Music Conference, 2008.

[WF97] Matt Wright and Adrian Freed. Open Sound Control: A New Protocol for Com-
municating with Sound Synthesizers. In In Proceedings of the 1997 International
Computer Music Conference, pages 101–104, 1997.

[Wil09] Christopher Wilson. Csound Parallelism. Technical Report CSBU-2009-07, Depart-
ment of Computer Science, University of Bath, 2009.

[WJ93] Paul R Wilson and Mark S. Johnstone. Real-time non-copying garbage collection. In
ACM OOPSLA Workshop on Memory Management and Garbage Collection, 1993.

[Xen01] Iannis Xenakis. Formalized Music: Thought and Mathematics in Composition (Har-
monologia Series, No 6). Pendragon Pr, 2nd edition, March 2001.

58

http://knorretje.hku.nl/wiki/Sogitec_4X

	Abstract
	Kurzfassung
	Contents
	Introduction
	Computer Music Systems
	SuperCollider & Concepts of Computer Music Systems
	Contribution
	Overview

	Parallelism in Computer Music Systems
	Data-Level Parallelism: Single Instruction Multiple Data
	Thread Level Parallelism: Signal Graph Parallelism
	Thread Level Parallelism: Pipelining

	Extending the SuperCollider Graph Model
	The SuperCollider Node Graph
	Automatic Parallelism for SuperCollider?
	Parallel Groups
	Proposed Extension: Satellite Nodes
	Alternative Approach: Freeform Node Graphs

	The Implementation of Supernova
	Parallelism in Low-Latency Soft Real-Time Systems
	Dsp Thread Subsystem
	Extending the SuperCollider Plugin Interface
	Nova SIMD

	Experimental Results
	Experimental Setup
	Engine Benchmarks
	Benchmarking Latency Hotspots

	Related Work
	Max-like languages
	Csound
	Distributed Engines
	Faust
	Occam

	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography

