MAGISTERARBEIT

Implementation of the VooDo Kern
Programming Language

Ausgefiihrt am

Institut fiir Computersprachen
der Technischen Universitit Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Puntigam

durch

Joachim Bickel, Bakk.techn.

Gottschalkgasse 1/23
A-1110 Wien

Wien, August 2005

Zusammenfassung

VooDo ist eine experimentelle objekt-orientierte Programmiersprache, welche eine Viel-
zahl an Features aufweist, hauptsachlich das Typsystem betreffend. Beispiele sind Mehr-
fachvererbung, Module mit Unterstiitzung fiir Vererbung, generische Typen und soge-
nannte wverteilte Optionen, welche das Hauptmerkmal neu in VooDo im Vergleich zu
anderen objekt-orientierten Sprachen darstellen. Optionen ermoglichen es einem Com-
piler, Synchronisations-Bedingungen statisch zu iiberpriifen. Es wird angenommen, dass
die Implementierung des VooDo Typsystems recht komplex ist und einige potenzielle
Probleme enthélt.

In dieser Magisterarbeit werden diese Probleme behandelt, indem ein Compiler-Frontend
fiir eine Teilmenge der Sprache, genannt VooDo Kern, implementiert wird, als Proof of
Concept und Basis fiir weitergehende Arbeit. Die Implementierung zeigt, dass die ei-
gentlichen Schwierigkeiten nicht in der Typiiberpriifung, sondern in den grundlegenderen
Bereichen, insbesondere Namensauflosung und Zyklensuche, zu finden sind.

Abstract

VooDo is an experimental object-oriented programming language containing a large va-
riety of features, mostly concerning the type system. This includes multiple inheritance,
modules that support inheritance, generic types, and so-called distributed options, which
are the key feature new to VooDo compared to other object-oriented languages. Options
allow a compiler to statically check synchronization constraints. It is to be assumed that
the implementation of the VooDo type system is quite complex and includes a number
of potential problems.

In this thesis we address these problems by implementing a compiler frontend for a
subset of the language, called VooDo Kern, as a proof of concept, and to provide a
basis for further work. The implementation shows that the actual difficulties are not in
type checking itself, but rather in more basic parts, especially name resolution and cycle
detection.

Contents

Contents

I. Overview

1. Introduction

2. VooDo Kern

2.1.
2.2.
2.3.

24.
2.5.
2.6.

2.7.

Overview e
Example
Basic Elements
2.3.1. Assemblies
2.3.2. Units.
2.3.3. Members
2.3.4. Statements
Element Sequence
Subtyping and Inheritance
Synchronization
2.6.1. Distributed Options L.
2.6.2. Synchronization Constraints
2.6.3. Active Type Modifiers
2.6.4. Tokens and Subtyping oL
2.6.5. Conditional Statements
Changes
2,71, Syntax e
2.7.2. Distributed Options

3. Methods and Tools

3.1.
3.2.
3.3.

Objective
General Approacho
Implementation Tools L
3.3.1. Programming Language C#
3.3.2. Parser Generator Coco/R

11
11
11
14
18
20
21
24
25
25
26
26
27
28
28
28

4. Examples
4.1. Covariant Routine Parameters
4.1.1. Problem
4.1.2. Solution in VooDo
4.1.3. Issues and Implementation
4.2. Cycle Detection
4.2.1. Approaches
4.2.2. Implementation
4.3. Lifted Types o
4.3.1. Approaches
4.3.2. Implementation
Il. Implementation
5. Overview
6. Syntax Analysis Phase
6.1. Syntax Analysis
6.1.1. Syntax Grammar
6.1.2. Attributed Grammar
6.2. Data Structures
6.2.1. Units. e
6.2.2. Members e
6.2.3. Formal Parameter Lists
6.2.4. Routine Bodies and Statements
6.2.5. Expressions
7. Name Resolution
7.1. Name Resolution Basics
7.1.1. Language Elements,
7.1.2. Context
7.1.3. Member Accesses
7.1.4. Creators
7.2. Name Resolution/Cycle Detection
7.2.1. Considered Approaches
7.2.2. Ordered Elements
7.2.3. Allowed Forward References
7.2.4. Name Resolution in Units
7.2.5. Name Resolution in Expressions
7.2.6. Resolution of Member Accesses
7.2.7. Recursive Routines

32
32
32
33
34
35
35
35
36
36
36

37
38

39
39
39
40
40
41
42
44
45
45

8. Inheritance
8.1. Name Resolution
8.2. Generic Units
8.3. Embedded Private Members
8.4. Substituted Members
8.5. Multiple Inheritance o

9. Semantic Checks
9.1. Basic Type Checking
9.1.1. Imterfaces
9.1.2. Order of Type Comparisons
9.1.3. Named Types
9.1.4. Modified Types
9.2. Substituted Members
9.3. Distributed Options
9.3.1. Types and Tokens,
9.3.2. State Information for Objects
9.3.3. Routine Bodies
9.3.4. Elements

1. Summary
10. Statistical Information

11.Future Work
11.1. Changes to the Language,
11.2. Implementation of Remaining Features
11.2.1. Basic Data Types
11.2.2. Distributed Options
11.2.3. Miscellaneous Features
11.3. Code Generator

12.Conclusion

IV. Appendix
A. List of Figures, Tables, and Listings
B. Explanation of Figures

Bibliography

65
65
66
67
67
68

69
69
69
69
71
71
72
72
72
73
76
[

78
79

84
84
84
84
84
85
85

86

87
88
90

93

Part I.

Overview

1. Introduction

VooDo (Vienna Object-Oriented Language with Distributed Options) is an experimental
object-oriented programming language developed at the Vienna University of Technology,
Institute of Computer Languages, Compilers and Languages Group. Conceptually, it is
similar to well-established object-oriented languages like Java [9], C# [21], Eiffel [10], or
C++ [22], and it includes many features known from other languages, especially concern-
ing the type system. Examples (see also [16]) include multiple inheritance, modules dis-
tinct from classes that support inheritance, multi-methods [4], and generic types [19, 2].
What is special about VooDo is the combination of all those features in one language,
as well as a new concept called distributed options. Based on process types [14], op-
tions are an approach to address problems occuring in concurrent programs. They allow
the compiler to statically check synchronization constraints and determine the need for
semaphore operations.

As VooDo itself is very complex, a scaled-down version called VooDo Kern [17] was used
as basis for this thesis, which contains only the most important concepts. In the rest of
this work, both VooDo and VooDo Kern refer to this smaller version. If the full version
is meant, this is denoted specifically.

An implementation of the VooDo language is assumed to be complex and face a number
of potential problems, mainly because of the complexity of the type system and related
to distributed options.

Since a complete implementation of the whole language is beyond the scope of this work, a
compiler frontend for VooDo Kern has been implemented in order to validate or disprove
this assumption and to provide a basis for further work. The programming language
used in the implementation is C#, with Coco/R as parser generator. The frontend is
designed using object-oriented techniques and an emphasis is placed on flexibility.

Part IT gives an overview of our implementation. We explain the most important aspects,
used approaches, as well as solutions to encountered problems. We also include some
statistical information to give an idea about the size and level of complexity of the
implementation.

While the compiler frontend is complex, the most problematic part turned out not to
be the implementation of the semantic checks, but the implementation of more basic
functionality, especially name resolution and cycle detection.

The remainder of Part I contains a description of the VooDo Kern language in Chapter 2,
and an overview of the methods and tools used in the implementation in Chapter 3.
Furthermore, Chapter 4 offers examples of VooDo Kern features, and a general idea of
the implementation of the required concepts.

Part II explains the implementation itself. We provide an outline in Chapter 5. The
remaining chapters describe the syntax analysis and internal data structures of the com-
piler frontend (Chapter 6), how name resolution and cycle detection are implemented
and the encountered problems (Chapter 7), the approach used for handling inheritance
(Chapter 8), and the semantic checks performed by the compiler frontend (Chapter 9).

In Part III, we summarize the information found during the course of this work. We
present statistical information regarding the implementation in Chapter 10. Chapter 11
assesses the additional work required to implement a complete VooDo Kern compiler,
and a conclusion can be found in Chapter 12.

The appendices (Part IV) contain a list of all figures, tables and listings (Appendix A),
as well as an explanation of the class diagram and example figures (Appendix B).

2. VooDo Kern

2.1. Overview

VooDo is an experimental object-oriented programming language. It is designed to in-
clude a large number of features. Most of those are known from other languages, but
new concepts not previously implemented are also included.

Two versions of VooDo have been proposed, a full version including every feature, and a
scaled-down version called VooDo Kern, which exists “to make a clear separation between
essential language conceptions and non-essential goodies” [17]. This work is based on the
latter.

In this chapter, we give an overview of the language. This is meant to provide an intro-
duction and describe the concepts relevant for the implementation of a compiler frontend.
Also included are some proposed changes that will, at least in part, be incorporated into
the language.

2.2. Example

Listing 1 shows a VooDo Kern implementation of a generic stack.

We assume a basic familiarity with other object-oriented languages, for example Java [§],
in the following explanations.

The stack is implemented using a singly-linked list. The generic class Node represents a
node in the list. Node has one type parameter, Element, which is used to specify the type
of the elements in the stack. Each node contains the element itself as well as a reference
to the next node, the latter of which may be Null, indicated by the ? before the type.
new is used to create new instances of the class (see Section 2.3.3).

The Stack class uses a Node object as its internal representation in the nodes variable.
Again, a creator named new is used to instantiate the class. The methods push and pop
implement the standard stack operations.

An interesting element is the token unique (see Section 2.6), which is used for synchro-
nizing access to the stack, as seen in lines 24 and 30. The when-statements require unique

class Node (type Element) is

elem: Element;
next: ?Node(Element);

creator new (e: Element; n: ?Node(Element)): Node(Element) do
elem e;
next — n;

end creator;

end class;

public class Stack (type Element) is
token unique = 1;
var nodes: ?Node(Element);

public creator new: Stack(Element) do
nodes = Null;
end creator;

public method push (p: Element) do
when unique do
nodes = Node(Element).new(p, nodes);
end when;
end method;

public method pop: 7 Element do
when unique, first: Node(Element) nodes do
nodes = first .next;
return first .elem;
end when;
return Null;
end method;

end class;

Listing 1: VooDo Kern: Generic Stack

to be at least one, decrement it on entry, and increment it again when the associated
block is left. If the token is not at least one, execution is blocked.

Also of note is the condition first: Nodes(Element) = nodes in the when-statement
in Line 30, a dynamic type check. This is needed because the type of nodes is a lifted
type (see Section 2.3.3), that is, it can be Null. The condition checks at runtime if
nodes contains a reference to an object of the specified type, Node (Element). If yes, the
condition is true and the reference is assigned to the named value first, which has the
specified type. Otherwise the condition is false and the when-block is skipped.

10

S U W N

2.3. Basic Elements

2.3.1. Assemblies

The basic unit of compilation in VooDo is called an assembly. As multiple assemblies
become relevant only once code generation is performed, it is assumed from here on that
only a single assembly is used.

2.3.2. Units

Like other current object-oriented languages, VooDo uses classes and other class-like
concepts as basic building blocks of programs. These so-called units are subdivided into
layers, which are defined implicitly through the contained members:

Instance Layer: Instance members are specific to and accessed using an instance of a
unit.

Shared Layer: The shared layer exists to support a very flexible form of generic types. A
unit has a shared layer if and only if it takes parameters (which are not restricted to
type parameters like for example in Java [2|). Shared members are the same for all
instances of the unit with the same actual parameters. The parameters themselves
also belong to the shared layer.

Static Layer: Static members are the same for all instances of a unit.

Listing 2 illustrates this by means of a generic class.

class A (type T) is
static var x: String = ...;
shared var a: T do ... end;
b: T do ... end;

end class;

Listing 2: VooDo Kern: Layers

Class A contains a static, a shared, and an instance member. x is a static variable,
and can be accessed through the class itself (A.x), through a parameterized version
(A(String) .x), and through an instance (v: A(String); t: T; ... t = v.x;). a
is a shared variable function. It can use the parameter of the class, and can be accessed
through either a parameterized version or an instance. b is an instance value function.
It can only be accessed through an instance of the class, and can, of course, also use the
parameter. For a description of the various kinds of members, see Section 2.3.3.

11

N O U R W N =

There are several kinds of units:

Class: Classes are similar to those in other languages. A class always has an instance
layer and may have a static layer (if static members exist) and a shared layer (if
the class takes parameters). Each class must contain at least one creator. Classes
are defined using the class keyword.

Class Brand: Class brands are like classes except that they allow member declarations
(as opposed to definitions) and need not necessarily contain a creator. They are
comparable to abstract classes in Java. The keyword sequence for defining class
brands is class type.

Module: Modules do not contain an instance layer. Members can only be declared as
static if there is a shared layer. Those not declared as static are assumed to
belong to the shared layer if there is one (that is, the module takes parameters),
and to the static layer otherwise. The module keyword is used to define modules.

Module Brand: Similar to class brands, module brands resemble modules, but allow
member declarations. The keyword sequence used is module type.

Brand: Brands are comparable to interfaces in Java. They do not define different layers
and allow only member declarations, no definitions. The layer of the members
in a brand depends on what type of unit uses it as a super-unit (see below and
Section 2.5 for details). Brands are defined using the keyword type.

Listing 3 contains an example for a brand.

public type StackInterface (type Element) is
method push (p: Element);
method pop: 7 Element ;

end type;

public class Stack (type Element): embed StackInterface(Element) is

Listing 3: VooDo Kern: Brand

Line 6 of this example could be used to replace Line 13 in Listing 1, illustrating the use of
a brand with a class. In this case, the declarations in the brand define instance members.

An example for a module can be found in Listing 4.

The module MyStack is very similar to the Stack class. However, no instances of the
module can be created, and all members without layer qualification, that is, in this case,
all members, are implicitly declared as belonging to the shared layer. Therefore, MyStack
is at the same time a type and an instance of the type.

12

public module MyStack (type Element): embed StackInterface (Element) is
token unique = 1;
var nodes: ?Node(Element) = Null;

public method push (p: Element) do
when unique do
nodes = Node(Element).new(p, nodes);
end when;
end method;

public method pop: ? Element do
when unique, first: Node(Element) nodes do
nodes = first .next;
return first .elem;
end when;
return Null;
end method;

end module;

Listing 4: VooDo Kern: Module

Note that MyStack embeds, that is, inherits from StackInterface (see Listing 3). In
this case, the members of StackInterface are used as shared members.

A summarizing list of the different kinds of units can be found in Table 1.

<£
S| g
o 195]
2lE|8
=S E| R
[S2 =) D
X j<B) j&) —
Type of Unit A | A | O | Layers
Class - | + | ! | static, instance
Class (generic) - | + | ! | static, shared, instance
Class Brand + | + | + | static, instance
Class Brand (generic) + | + | + | static, shared, instance
Module - | + | - | static
Module (generic) - | + | - | static, shared
Module Brand + | + | - | static
Module Brand (generic) | + | + | - | static, shared
Brand + | - | - | none

Table 1.: Units Summary

Sometimes, it is useful to access only the shared and static layers of a class or class brand,
or only the static layer of a class, class brand, module, or module brand. This is possible
using the keywords static, shared, or module as suffix of a unit in the same form as
a member access. shared references the shared and static layer of a unit together (also

13

called the module of a class) and is only available for generic classes and class brands.
static references just the static layer of a unit, and is available for all units except
brands. The semantics of module depend upon whether the unit takes parameters or
not. If it does, module is equivalent to shared, otherwise, it is equivalent to static.

Classes and modules can be used as objects and as types. Table 2 provides an overview of
examples of possible units. Additionally, it shows the use of the units themselves, modules
and static layers thereof, and instances of classes, as objects. The “Type” column contains
the type of the object in the “Object” column. Note that brands, class brands, module
brands, and static and shared layers thereof cannot be used as objects but only as types.

Unit Object Type

class A x: A A
A A static
A static A static

class B (type T) x: B(Integer) B(Integer)
B(Integer) B(Integer).shared

B(Integer).shared | B(Integer).shared
B(Integer).static | B.static

B.static B.static
module C C C = C.static
C.static C = C.static
module D (type T) | D(Integer) D(Integer) = D(Integer).shared

D(Integer).shared | D(Integer) = D(Integer).shared
D(Integer).static | D.static
D.static D.static

Table 2.: Units as Objects
Units can have public or default visibility. Public units are visible everywhere, while

units with default visibility are only accessible from within the assembly containing the
unit.

2.3.3. Members

Unit members in VooDo can be either declared or defined, depending on the unit (see
Section 2.3.2). Members can have one of the following visibility states:

Private: Members that have private visibility are only visible in the unit in which they
are declared or defined and in instances of that unit.

Public: Public members are visible wherever the unit or instance is visible.

14

Default: Members not declared as either public or private have default visibility, that
is, they are visible in the assembly containing the unit in which they are declared
or defined and in all sub-units of that unit.

There are basically four kinds of unit members, described below.

Data Members

Data members are named values and variables. Named values are similar to final variables
in Java, as they can only be assigned to once. Variables basically function like those in
other programming languages, however, there is an important difference, as write accesses
to variables are only possible from inside the object containing the variable.

All data members must be initialized before the first read access. They can either be
initialized directly in their definition, in a creator, or in a method. In the last case,
it must be guaranteed that no read access is possible before that method is executed.
In addition, for named values, it has to be impossible for the initializing method to be
executed more than once. These restrictions can be asserted using tokens (see below).

Routines

There are four kinds of routines:

Value Functions: Value functions provide a purely functional subset of the language, in
that they are not allowed to have any side effects and may only access named values
and other value functions, no variables, variable functions, or methods. Thus, the
result of each call of a value function depends only upon the actual parameter
values and named values. Value functions, like named values, are declared without
a special keyword. For an example see Listing 2, Line 4.

Variable Functions: Like value functions, variable functions must not have any side ef-
fects. They are, however, allowed to access variables. Thus, the result of a variable
function call can change from invocation to invocation, even if the actual parame-
ters stay the same. Variable functions are declared/defined using the keyword var,
same as variables. An example can be found in Listing 2, Line 3.

Methods: Methods are the most general routines. Side effects are allowed to occur,
access to all visible members is possible, and methods need not have a return
value. The keyword method is used to declare or define methods. Listings 1, 3, and
4 contain examples of methods.

15

=W N =

Creators: In order to create an instance of a class, a creator is used. Creators are
basically static or shared methods (depending on whether the class is generic or
not) that have access to instance members and in which this is available. The
return type must be the class itself (optionally modified using type modifiers, see
below). In creator declarations/definitions, the creator keyword is used. The Node
and Stack classes in Listing 1 each contain a creator.

A special case exists for data members and parameterless functions. For units that allow
both declarations and definitions (i.e., class brands and module brands) a parameterless
value function declaration is indistinguishable from a named value definition without ini-
tial value, and the same is true for variable function declarations and variables. However,
this ambiguity only exists on the instance layer, because shared and static data members
must be initialized in their definition. The decision between these kinds of members is
postponed to an inheriting unit, except if there is an assignment to the member. In this
case it can only be a data member.

Named Types

Named types provide a kind of type constants. Basically, a named type is a different name
for an existing type. However, it is also possible to explicitly specify a supertype for a
named type, which is used wherever the actual type value is not available. Defined named
types must be initialized directly in the definition, while named type declarations can
omit the initialization and only specify a supertype. Named types can take parameters.

Listing 5 shows the use of directly initialized named types (with and without parameters)
as well as a named type declaration specifying a supertype.

type StackType (type Element) = Stack(Element);
type IntegerStack Stack (Integer);

type SomeStack: StackInterface;

Listing 5: VooDo Kern: Named Types

A more comprehensive example for the use of named types can be found in Section 4.1.

In addition to unit members, named types can also be formal parameters of generic units
or routines. Such type parameters must not take parameters themselves, and can of
course only specify a supertype, no initialization. Listings 1, 3, and 4 illustrate the use
of named type parameters for generic units.

A special pre-defined named type with one parameter is ?, which defines a so-called
maybe-type or lifted type. All instances of the type specified as parameter (the just-type
of the maybe-type) as well as the special module Null are valid instances of such a type.

16

UL W N =

?Null and Null are identical. In contrast to other parameterized named types, lifted
types are covariant, that is, a type ?7U is a subtype of 7T if U is a subtype of T. This does
not pose any problems with the subtyping relation. It is, however, necessary, because
type modifiers (see below) are allowed on maybe-types, and apply to the underlying just-
type. If lifted types were not covariant, this would break the semantics of type modifiers
and thus distributed options (see below and Section 2.6). Examples for lifted types can
be found in listings 1, 3, and 4.

Tokens

Tokens are used for synchronization. They are declared/defined using the keyword token
and can contain an initialization. Basically, a token somewhat resembles a variable (in
earlier versions of the language, tokens were called type variables [16]) in that a token
has a numerical value that can change over time. However, tokens cannot be assigned to
directly. Token values are of type Natural, which contains all non-negative integers and
the special value Infinity.

Dynamically, tokens correspond to semaphores [5], but are implemented in a safer way
and provide additional static features, as they can be used to encode state information
in the type of an object, by specifying a lower bound for the token values in an object.

Listing 6 shows a class Fork (for the dining philosophers problem [6, 7]) that contains
two token definitions without initialization (which indicates an initial value of zero).

public class Fork is
public token up;
public token down;

end class;

Listing 6: VooDo Kern: Tokens

If the type of an object is simply Fork, no further information about the values of the
tokens is known. To specify a fork that is down on the table, the type Fork[down] is
used, that is, an object of type Fork for which the token down has at least the value one.
In this context, we also say that the object has one down token. The corresponding type
for a fork that is up in the hand of a philosopher is Fork [up]. The token specifications in
squared brackets are called type modifiers, and the type Fork in this case is known as the
base type (not to be confused with a supertype, for which this expression is sometimes
used).

To specify token values other than one, it is possible to append a numeric value to
the token in a type modifier. Additionally, more than one token can be specified. For
example, Fork [down:3, up:2] would specify an object of type Fork that has three down
tokens and two up tokens. A compiler can check if such a type can actually exist. The

17

==

= O © 00 N 3 Ok W N

value that can be specified is relative to the token’s default value, which is normally zero
(not the token’s initial value, which is only used inside the unit). Listing 7 shows an
example where this is not the case.

class A is
token t;
type T = A[t];
method m(p: T) do
l: T[t:—1] = p;

end method;

end class;

Listing 7: VooDo Kern: Negative Token Value

Here, the base type T in Line 7 already contains a type modifier. Thus, the use of a
negative token value can make sense. Note that the specified value of a token (in sum
over all applied type modifiers) can never be lower than zero.

For further discussions of the use of type modifiers and tokens in general see Section 2.6.
2.3.4. Statements

The kinds of statements for use in a routine body in VooDo are described below.

Local Data Definitions

A local data definition defines a named value or variable that is only visible within
the routine body containing the statement. Syntactically, they resemble data members
without visibility or layer specifications. As with data members, local named values and
variables must be assigned to before their first use.

Assignments

Assignments assign a value to a named value or variable. They are written in the form
x = v, where x is the data object assigned to and v the assigned value.

18

N O U R W N =

Invocations

Routine invocations are used for routines that do not return a value. Other routines can
only be used in an assignment or as an actual parameter, not as an invocation statement
ignoring the result.

Block Statements

Block statements are conditional statements (if and when) and while-loops. Conditional
statements execute at most one of a number of blocks of statements. Each but at most
one of the blocks is associated to a list of conditions. The first block for which all
conditions are true is selected.

Listing 8 shows an if-statement.

if a.isAvailable () do
else if b=c¢c, x: T = v do
else do

end if;

Listing 8: VooDo Kern: if-Statement

Normally, conditions are expressions that return a boolean value. However, a special
case exists in the form of a dynamic type check, as seen in Line 3 of the example, as well
as Listing 1, Line 30. Such a condition includes a local named value definition for the
associated block. Here, the value v must be of type T in order for the condition to be
true. In that case, the named value x is defined and initialized with v.

For a discussion of the use of synchronization constraints in conditional statements and
the difference between if and when see Section 2.6.5.

A while-loop consists just of a list of conditions and a block of statements. The state-
ments in the block are repeated as long as the condition is true.

Return Statements

Return statements consist of the keyword return optionally followed by a value to be
returned from the routine call. Return statements must contain a return value if and
only if the routine has a return type.

19

N O Ol W

2.4. Element Sequence

VooDo is designed to prevent cyclic definitions. In some cases this is necessary for a
compiler to function (i.e., to prevent an endless recursion) while in others it provides
additional safety. Listing 9 illustrates this in the simple case of a named value that is
initialized with itself.

class A is
x: Integer = f;
f: Integer do
return this.x;
end ;

end class;

Listing 9: VooDo Kern: Invalid Cycle

In contrast to other programming languages, this is not allowed in VooDo.

To allow detection of invalid cycles, VooDo defines a logical sequence on all units, layers
of units, and members. Note that this sequence does not have to and in some cases
cannot correspond to the order of the elements in the source code. The logical order is
defined using references between elements. In the standard case, the referenced element
comes before the one referencing it. For the example in Listing 9, the named value x
references the value function f, thus, £ must come before x in the sequence. Similarly, f
references x, so x must precede f. As both assertions cannot be true at the same time,
the example contains an invalid cycle.

The sequence of a number of elements relative to each other is assumed without being
explicitly specified in the source code:

e Static members of a unit precede the static layer of the same unit, and shared
members precede the shared layer.

e The static layer of a unit precedes all shared members of the unit.

e The static and shared layers of a unit precede the instance layer.

e The instance layer of a unit precedes the instance members of the unit.

e All layers of a unit (but not necessarily all members) precede the unit itself.

e Each layer of a super-unit precedes the same layer of each sub-unit and all members
of the sub-unit at this layer.

this denotes the instance layer of the object containing the member in which it is used,
and thus comes before the member itself in the logical sequence.

20

In some cases, cycles are necessary, for example when declaring the type of a member,
or for recursive routines. Therefore, there are a number of situations where a reference
between two elements does not define the relative order of the elements. For the following
elements, references are allowed from other elements that precede them in the sequence:

e accesses to data members and routines, provided there is a prefix that does not
start with this, a unit, or a static layer or module thereof (in other words, accesses
to instance members of other objects than the containing one);

e routine invocations in routine bodies (that is, recursive routines); note, however,
that both invoking and invoked routines must belong to the same layer, and there
most not be a data member in the sequence between the two routines;

e types at the same layer directly following : (that is, all except those used as actual
parameters, as supertypes in unit definitions, or to initialize named types);

e types at the same layer used as actual type parameters in super-unit specifications
(embed clauses, see Section 2.5; needed for F-bounded genericity [3], which permits
the use of a type as parameter of its own supertype);

e this as well as units (and static layers and modules thereof) when used as prefixes.

2.5. Subtyping and Inheritance

Subtyping in VooDo, like other object-oriented languages, is based on the principle of
substitutability, that is, an instance of a subtype can be used wherever an instance of a
supertype is expected. The most general type is {2}, the empty type, which is a supertype
of any type.Primarily, subtype relationships between types are explicitly specified by unit
inheritance, with the following additions:

e The empty type {} is a supertype of all types.

e Null is equivalent to itself and to ?Null.

e A maybe-type ?T is a supertype of its just-type T.
e Lifted types are covariant (see Section 2.3.3).

e A named type is a subtype of its declared supertype, and is equivalent to its type
value if available (see Section 9.1).

e Subtype relationships exist between a unit and its embedded units, as well as the
static layer or module of a unit and the static layer respectively module of its
embedded units.

21

e A unit is a subtype of its static layer and module (if available).

Additionally, if two types have type modifiers (see Section 2.3.3), the token values of the
subtype must imply those of the supertype (see Section 2.6.4).

To simplify the definition of substitutability given below, a subtyping relationship is
defined on formal parameter lists. A formal parameter list s is a subtype of a formal
parameter list ¢ if

e s and t specify the same number of parameters,

e cach parameter (or the corresponding declaration) in s can be used where the
parameter at the same position (or the corresponding declaration) in ¢ is expected,

e and if ¢ contains synchronization constraints (see Section 2.6.2), then s also contains
synchronization constraints implying those of t.

Inheritance is specified using an embed clause (for an example refer to Listing 4). Multiple
inheritance is supported without additional restrictions. Conceptually, inheritance is
defined by copying all members from the inherited unit to the inheriting unit. Private
members are renamed so as to prevent conflicts. For non-private members, the following
two cases are problematic:

e Two (or more) members have the same name, and none is substitutable for all
others (see below).

e Two (or more) members are defined (not just declared) in different embedded units.

The second case is only problematic because it is not possible to decide which definition
is to be used, and can thus always be resolved by providing a new definition, that is,
overriding the members. For the first case, providing a declaration or definition that can
substitute all embedded members of the same name can in some cases solve the problem.
However, there are instances where the embedded members are completely incompatible
and the respective units cannot be embedded at the same time (for example, if one of
the members is a named value and the other a named type).

Brands can only inherit from other brands. Modules and module brands can be sub-units
of brands, modules, module brands, and static layers thereof. Classes and class brands
can inherit from all kinds of units and static layers and modules thereof.

Members can be overridden by other members if and only if the inherited member is
substitutable by the overriding member, as defined by the reflexive and transitive closure
of the following rules:

22

A named value can be used where a named value is expected if the type of the used
named value is a subtype of the expected named value’s type.

A named value can be used where a parameter-less value function is expected if
the named value’s type is a subtype of the value function’s result type.

A parameter-less value function can be used where a named value is expected if
the value function’s result type is a subtype of the named value’s type.

A value function can be used where another value function is expected if
— the expected value function’s formal parameter list is a subtype of the used
value function’s formal parameter list,
— and the used value function’s result type is a subtype of the expected value

function’s result type.

A variable can be used where a parameterless variable function is expected if the
variable’s type is a subtype of the variable function’s result type.

A value function or variable function can be used where another variable function
is expected if

— the expected variable function’s formal parameter list is a subtype of the used
function’s formal parameter list,
— and the used function’s result type is a subtype of the expected variable func-
tion’s result type.
A function can be used where a method is expected if
— the method’s formal parameter list is a subtype of the function’s formal pa-
rameter list,
— and the method has a result type such that the function’s result type is a
subtype of the method’s result type.
A method can be used where another method is expected if
— the formal parameter list of the expected method is a subtype of those of the
used method,

— if one of these methods has a result type, then both methods have one, and
the used method’s result type is a subtype of the expected method’s result

type.

A creator can be used where a shared method or a static method (in classes without
shared layer) is expected if

— the method’s formal parameter list is a subtype of the creator’s formal pa-
rameter list,

23

— the method has a result type,

— the creator’s result type (that is, the class containing the creator together
with any type modifiers specified in the creator definition) is a subtype of the
method’s result type.

e A shared method or a static method (in classes without shared layer) can be used
where a creator is expected if

— the creator’s formal parameter list is a subtype of the method’s formal pa-
rameter list,
— the method has a result type,
— and the method’s result type is a subtype of the creator’s result type.
e A creator can be used where another creator is expected if
— the expected creator’s formal parameter list is a subtype of the used creator’s
formal parameter list,
— and the used creator’s result type is a subtype of the expected creator’s result
type.
e A named type can be used where another named type is expected if
— the expected named type’s formal parameter list is a subtype of the used
named type’s formal parameter list,

— the used type’s declared supertype is a subtype of the expected named type’s
declared supertype,

— and the used type’s type value is a subtype of the expected named type’s type
value.

Additionally, overriding members can be more visible then overridden members, and can
be moved to a lower layer (instance to shared or static, shared to static).

If an inherited generic unit is statically determined (that is, all actual parameters are
statically determined), any shared members are inherited as static members.

2.6. Synchronization

Synchronization between concurrent threads of execution in VooDo is a focus of the
language. It is centered around the concept of tokens (see Section 2.3.3), which are used as
distributed options. This section describes the synchronization concepts as implemented
in this work.

24

W N

N o wo

2.6.1. Distributed Options

Each token defines an option a client of an object can have. Type modifiers specify the
currently available options (see Section 2.3.3, especially Listing 6 and the corresponding
explanations). For example, if an object is known to be of type Fork [down], we say that
one down option is available on the object.

Options are a limited resource. When creating an alias to an object, any options required
are removed from the original named value or variable. Listing 10 illustrates this, using
the Fork class defined in Listing 6.

method m (f: Fork[down]) do
g: Fork[down| = f;
h: Fork g;

end method;

Listing 10: VooDo Kern: Options

In Line 2, the option down is available on £f. However, after Line 3, it is available on g,
but no longer on £, that is, the type of £ has changed to Fork. In contrast, Line 5 does
not change any types, as the type of h does not specify any required options. Actually,
this example is not correct, because f is still of type Fork at the end of the method, but
should be of type Fork[down].

Passing actual parameters is similar to creating aliases through assignments. However,
unless specified otherwise (see Section 2.6.3), the options are returned to the object used
as actual parameter after the invoked routine returns.

2.6.2. Synchronization Constraints

Options become a useful concept only through the use of so-called synchronization con-
straints. These are token values specified by a member. The member can then only be
accessed on an object with all required tokens available, that is, the client accessing the
member has all required options. Listing 11 provides a more complete version of the
Fork class.

Fork contains two methods specifying synchronization constraints and a creator. The
synchronization constraints imply that take can only be called on an instance of
Fork[down], while for giveBack the instance has to be of type Fork [up].

In the example, active synchronization constraints, identifiable by ->, are used. Active
synchronization constraints define changing options. After a call to take, the object is
no longer of type Fork[down], but of type Fork[up], and vice versa for giveBack.

25

W o e

N o »o

public class Fork is
public token up;
public token down;

public method take (with down —> up) do ... end method;
public method giveBack (with up —> down) do ... end method;
public creator new: Fork|[down| do ... end creator;

end class;

Listing 11: VooDo Kern: Synchronization Constraints

Only methods and creators may specify active synchronization constraints, all other
members, including value and variable functions, are restricted to passive synchronization
constraints.

2.6.3. Active Type Modifiers

Similar to active synchronization constraints, methods and creators may specify active
type modifiers on formal parameters. This is illustrated in Listing 12.

method takeFork(f: Fork[down —> up]) do
f.take;
end method;

Listing 12: VooDo Kern: Active Type Modifiers

In this way, it is also possible to consume an option in a method, for example if the object
is to be assigned to a member variable that specifies the option, by writing [token ->].

2.6.4. Tokens and Subtyping

For subtyping, token values on types have to be taken into account. A type s is a
subtype of a type t if, in addition to the base type of s being a subtype of the base type
of t, the tokens of s imply those of ¢ (see Section 2.5). For synchronization constraints,
the equivalent rule is included in the definition of subtyping on formal parameter lists.
Note that the formal parameter list of a overriding member must be a supertype, not
a subtype, of the formal parameter list of the overridden member because of parameter
contravariance.

The tokens of s imply the tokens of ¢ if they can become equal by applying any number
of transformations from the following list to the tokens of s:

e Tokens to the left of -> can be removed. For example, down:2 -> up implies
down -> up.

26

© 0 N U W N

e Tokens to the right of -> can be added. For example, down -> up implies
down -> up:2.

e Tokens can be removed from the left and right of -> simultaneously (and they
can be removed without restrictions if there is no ->). For example, up -> up:2
implies -> up, and up:2 implies up.

2.6.5. Conditional Statements

Synchronization constraints and type modifiers can be checked statically, eliminating
the need for semaphore operations. However, it is also possible and often necessary
to dynamically check for token values using conditional statements (if and when; see
Section 2.3.4).

Conditional statements may contain synchronization constraints similar to methods, that
is, active or passive. The tokens available are those defined in the current object. In
contrast to methods, which can only be called if the required tokens are guaranteed to be
available at compilation time, conditional statements perform a dynamic check. An inner
block for which the required tokens are available at runtime is executed. The tokens to
the right of -> are added to the containing object upon leaving that inner block.

The difference between if and when is that the latter blocks execution until the tokens
specified in the list of conditions for at least one block are available, while if does never
block.

Listing 13 illustrates the use of an if-statement.

class Fork2: embed Fork is
method takeOrGiveBack do
if down —> up do
take;
else if up —> down do
giveBack;
end if;
end method;
end class;

Listing 13: VooDo Kern: Synchronization Constraints in Conditional Statement

Through the use of conditional statements, tokens provide the same flexibility as
semaphores. However, the use of tokens is safer, as all option requirements to the left of
-> define an atomic action. Therefore, there is a much lower risk of having unbalanced
semaphore operations.

27

2.7. Changes

Because of experiences in this implementation, possible changes to VooDo have been
suggested, but not yet incorporated into the language description.

2.7.1. Syntax
Number Literals

The lexical syntax for VooDo Kern only specifies positive integer and floating point
numbers. However, because of changes in the use of type modifiers, negative integers are
needed (see below). Consequently, all integer constants are of type Integer, as opposed
to Natural as specified in the original description. In the complete language, negative
numbers are supported through the use of the - operator, which is not available in VooDo
Kern.

Creators

Creators were originally specified as not having a return type. In order to allow creation
of type instances with modified token values, instance-level tokens can be specified to
the right of -> in synchronization constraints. In this implementation, creators must
specify a return type, which has to be the containing unit, optionally with type mod-
ifiers. The synchronization constraints must not contain instance-level tokens. This is
semantically identical to the original form, but easier to implement, as the return type
(and its expected options) are explicitly specified in a way syntactically discernible.

2.7.2. Distributed Options

These changes will be included in a later version of the language specification:

e According to the original specification, token declarations and definitions can spec-
ify a default token value different from zero. This is no longer possible.

e In the original version, type modifiers can only specify positive values. They are
always based on the default value of the token in the real base type (the original
unit containing the token declaration/definition). In the modified version, type
modifiers can specify negative values. They apply to their specified base type (for
example, a named value) instead of the real base type (see Section 2.3.3).

28

3. Methods and Tools

3.1. Objective

To evaluate the complexity of implementing the VooDo language as well as to provide a
basis for further work, we developed a test implementation, which, for reasons of scope,
is only a compiler frontend, not including a code generator.

3.2. General Approach

Basically, a linear approach was used for the implementation. However, the stages were
only planned in a rough way, as it had not been deemed possible to anticipate all potential
problems in advance. The distinctions between the stages were therefore somewhat more
blurred in the actual implementation process, and in several cases changes as many as
three stages back were needed.

Below, the planned stages of the implementation are described in short. These stages
correspond approximately to the phases in the compiler described in Chapter 5.

Syntax Analysis The syntax analysis provides the basis for all further work. This phase
includes any semantic tests needed to differentiate between similar syntactic con-
structs, but not the attributed grammar used for building the data structures.

Data Structures In this stage, we create the classes and interfaces for the internal com-
piler data structures, as well as the parts of the attributed grammar needed for
building the data structures from the syntax tree.

Data Structure Semantics For data structure semantics, we add those routines and
additional data values that provide the connections between the data structures.
This includes the complete name resolution mechanism as well as cycle detection.
Another part of this stage is the implementation of unit embedding respectively
inheritance.

Semantic Checks The semantic checks include the routines and values needed for the
complete type checking phase in the compiler. This encompasses any checks that
need not be performed during name resolution, but can be done afterwards.

29

Further Semantic Checks (optional) Some of the features listed in Section 11.2 have
been seen as optional in case the implementation would be finished sooner than
anticipated. As this has not been the case, the stage has been dropped.

Table 3 lists the anticipated proportions for the individual stages of the time needed to
develop the complete implementation (compare Table 5 in Chapter 10).

Stage Proportion
Syntax Analysis 10%
Data Structures 30%
Data Structure Semantics 20%
Semantic Checks 40%

Table 3.: Anticipated Proportions of Stages

For the implementation itself, we placed an emphasis on flexibility and a clean, object-
oriented design to facilitate later extensions.

3.3. Implementation Tools

3.3.1. Programming Language C#

C# is a modern object-oriented programming language similar to Java [9]. It was origi-
nally developed by Microsoft and standardized by the European Computer Manufacturers
Association (ECMA) and the International Organization for Standardization (ISO) [21].

At the time of this work, the current version of C# is 1.1, with 2.0 being available as a
public beta. For the implementation of the VooDo compiler we chose the latter because
of several new features 23], especially support for generic types.

The following reasons were decisive in choosing C# as opposed to other possible languages
like C, C++, or Java. The languages in parentheses indicate which other language does
not fulfill the respective requirement.

Object-oriented language. (C)

Automatic memory management and no need for unmanaged pointers. (C-+-+)

Availability of an integrated development environment. (Java)

Familiarity with the language and personal preference of the author. (Java)

30

An argument for the use of Java that has been considered was portability, as the default
C# implementation is only available on Microsoft Windows. However, the availability
of the open-source .NET/C# runtime environment Mono |18] was deemed sufficient.

3.3.2. Parser Generator Coco/R

Coco/R [12] is a parser generator like YACC, but also supports generating a scanner and
using an attributed grammar directly. It is available for several programming languages,
including C#.

From an input file, Coco/R constructs a recursive descent parser [20]. Thus, in principle,
it can only use LL(1) grammars. It is possible, however, to use semantic checks written
in the target language to process LL(n) grammars for an arbitrary n [13].

Coco/R was chosen as parser generator for this work because it was deemed adequate for
the task and was the only parser generator for C# with which the author had already
been familiar.

31

0 N O O R W N

4. Examples

4.1. Covariant Routine Parameters

4.1.1. Problem

Because of substitutability, that is, an instance of a subtype can be used where an
instance of a supertype is expected, types of formal parameters (that is, types of value
parameters and supertypes of type parameters) must be contravariant. Consider the
example in Listing 14, which uses covariant parameters where they would be useful to
tightly couple two type hierarchies.

class type Animal is

method feed (f: Food);

creator new: Cattle do ... end creator;
end class type;

class Cattle: embed Animal is
method feed (f: Hay) do ... end method;
end class;

type Food is ... end type;

class Hay: embed Food is
creator new: Hay do ... end creator;

end class;

class Meat: embed Food is
creator new: Meat do ... end creator;

end class;

Listing 14: Example: Covariant Parameters (Invalid)

Note the method declarations/definitions in lines 5 and 11. However, this is not correct
(and not allowed in VooDo), as Listing 15 shows.

Since a is declared as Animal, the call to feed in Line 4, while obviously not correct,
is valid and cannot not be rejected by the compiler. For a more elaborate discussion of
covariant parameter types (and how they are handled in Eiffel), see Chapter 17 in [11].

32

W o e

© 0N U e W N =

e e e e
© 0N W N = O

W N e

a: Animal = Cattle.new;
f: Food = Meat.new;

a.feed (f);

Listing 15: Example: Use of Covariant Parameters (Invalid)

4.1.2. Solution in VooDo

Named types in VooDo (see Section 2.3.3) provide a way to partially support covari-
ant parameter types consistent with substitutability. Listing 16 modifies the incorrect
example from Listing 14 to be correct VooDo code.

class type Animal is
static type F = Food;

static method createFood: F do ... end method;
method feed (f: F);
creator new: Cattle do ... end creator;

end class type;

class Cattle: embed Animal is
static type F = Hay;
static method createFood: F do ... end method;
method feed (f: F) do ... end method;

end class;

type Food is ... end type;

class Hay: embed Food is
creator new: Hay do ... end creator;

end class;

Listing 16: Example: Named Types and Covariant Parameters

The example in Listing 17 shows a possible use of these units.

a: Animal = Cattle.new;
f: a.F = a.createFood;

a.feed (f);

Listing 17: Example: Use of Named Types and Covariant Parameters

This solution is somewhat restricted in that it requires the use of the createFood method.
However, in most cases, this or a similar solution to create the actual argument is neces-
sary anyway. Otherwise the actual type of the object containing the routine to be called
must be known, eliminating the need for covariant parameter types.

33

4.1.3. Issues and Implementation

Below is a discussion of the issues this approach has and an overview of how these are
handled in the implementation.

Type Equivalence and Subtyping

The following problems concerning named types are relevant in the example:

e Type equivalence between a named type and its specified type value can only be
asserted in certain circumstances (see Section 9.1.3). It is not possible to guarantee
an equivalence between a.F and Food or Hay (which is not necessary in this case).

e The type of £ must be a subtype of the type of the parameter of a.feed. In this
case an equivalence can be ascertained even, because a is the same object in both
cases (see below).

e The type of the parameter of feed in Cattle (the named type F) must be a su-
pertype of the corresponding type in Animal. Since a named type can only change
covariantly, a special type equivalence is assumed between an overridden and over-
riding named type, regardless of the specified supertype or type value, but only
when used inside the unit (that is, when checking substitutability of members).
See Section 9.1.3 for details.

Object Identity

The indirect use of covariant parameter types utilizing named types requires knowledge
of object identity. The example in Listing 17 is only possible because it can be asserted
that a is the same object in Line 1 and Line 4. The solution in this case (and in this
implementation) is simply to use named values, which can only be assigned to once.

To be able to ascertain object identity, the prefixes of the member accesses must be
available. This includes the type a.F of £, the routine call to a.feed, as well as the type
of the parameter in a.feed (also a.F). The implementation handles this using special
member access classes that provide information about the object to which the access
belongs (see Section 7.1.3). Additionally, it is necessary to analyze member signatures
for each member access, so as to for example connect the type of the parameter in the
call to a.feed with the prefix a (also discussed in Section 7.1.3).

34

W N Ut s W N

e e e e
N O U R W N = O ©

4.2. Cycle Detection

4.2.1. Approaches

Most well-known object-oriented programming languages perform cycle detection only in
cases where it is absolutely necessary for a compiler to function, for example in inheritance
hierarchies. For other references cycles are not rejected by the compiler and in many cases
only found when testing the application.

VooDo uses a different approach in that it tries to prevent invalid cycles wherever possible.
Consider the example in Listing 18, which contains a non-trivial invalid cycle (compare
Listing 9 in Section 2.4).

class A is
x: Integer
y: Integer

public var f: Integer do
if g > do

ot

else

end if;
end do;
public g: Integer do

return x;
end do;

end class;

Listing 18: Example: Non-Trivial Invalid Cycle

A logical order on all units, layers of units, and members is used to implicitly define
invalid cycles (see Section 2.4).

4.2.2. Implementation

Cycle detection has turned out to be the most problematic part of the implementation.
Basically, references between elements are used to implicitly defined the logical sequence
of elements, which corresponds roughly to the order the elements are resolved in. A
recursion detection algorithm is used to find invalid cycles, and a number of flags control
exemptions to the cycle detection rules. The cycle detection algorithm is explained in
detail in Section 7.2.

35

N OO e W

4.3. Lifted Types

4.3.1. Approaches

Other object-oriented languages normally allow the use of null references or null pointers
as values for most non-trivial types, that is for example classes. Experience has shown,
however, that in the majority of cases, no null values should be allowed, for example in
actual parameters. This implies a need to perform a large number of dynamic checks if
errors resulting from unexpected null values are to be handled gracefully.

In VooDo, the special value Null (a module) is only allowed in so-called lifted types (also
known as maybe-types). Listing 19 shows a method with two parameters, the second of
which may be Null, that is, contain a null value.

method foo (s: String, i: ?Integer) do
if x: Integer = i do
end if;

end method

Listing 19: Example: Lifted Type

To ensure that only lifted types can contain Null, all data elements must be initialized
before their first use. Null is a subtype of all lifted types, but of no non-lifted type.

To ensure static type safety for member accesses, maybe-types do not export the interface
of their underlying just-type. Therefore, a dynamic type check (see Section 2.3.4) is
needed in order to use

4.3.2. Implementation

The implementation of lifted types is straight-forward and has not caused any significant
issues.

36

Part Il.

Implementation

37

5. Overview

The implementation of the comiler frontend is divided into four projects:

vkc The main assembly (in C#, not to be confused with the equivalently termed VooDo
concept). Contains the static class Vkc.Program, which implements a main routine
that checks for a filename as parameter and calls first the parser and then the
semantic checking routines.

Tools Assorted helper classes and interfaces (namespace Vkc.Tools) that do not fit
anywhere else. This includes the Token class used by Coco/R for source tokens
(not to be confused with the VooDo language concept of the same name), as well
as error handling classes.

Parser The Scanner.frame and Parser.frame from Coco/R (both slightly modified),
and the Coco/R input file Vkc.Parser.atg. These are used by Coco/R to generate
the Scanner. cs and Parser. cs, which implement the recursive descent parser used
by the compiler. The namespace used is Vkc.Parser.

Data Structures This is where most of the implementation (except the syntax analysis)
resides. It contains the namespace Vkc.DataStructures and a number of sub-
namespaces thereof.

This assembly is larger than originally anticipated, as no useful factorization could
be found, because there must not be any circular dependencies between assemblies,
and all classes and interfaces in this one are interdependent in some way.

It should be possible to add a code generator as an additional project, through the use
of either sub-classes of the existing data structure classes (modified to utilize abstract
factory methods), or the extraction of interfaces for the existing data structures. The
latter approach is anticipated to require less changes to the current code.

38

6. Syntax Analysis Phase

The syntax analysis phase in the compiler frontend consists of two parts, the actual
syntax analysis using the Coco/R-generated parser, and the construction of internal
data structures.

6.1. Syntax Analysis

6.1.1. Syntax Grammar

The syntax analysis has been implemented in a straight-forward way, by basically trans-
lating the VooDo Kern syntax grammar from [17] to an LL(1) grammar for Coco/R.
Of course, the VooDo Kern grammar is not fully LL(1), so some changes were needed.
Most changes are restructurings or simple resolver routines providing a fixed number of
additional look-ahead symbols. These trivial changes are not detailed here.

However, in the following cases, more complex resolver routines are required:

Data Member definition Parameterless function declarations and data member defini-
tions without initial value are syntactically identical and need not necessarily be
differentiated (see sections 2.3.3 and 6.2.2). However, data member definitions
containing an initial value can be discerned from function definitions/declarations
by finding an equal sign, outside of parentheses, before either a semicolon, the
keywords do or end, or the end of the file.

Routine definition Routine definitions can be told apart from declarations by the key-
word do, outside of parentheses, before either a semicolon, the keyword end, or the
end of the file.

Assignment condition VooDo contains a special assignment condition used for dynamic
type checks (see Section 2.3.4). To differentiate such an assignment condition from
a normal condition, a colon must follow the first identifier, and an equal sign must
be found at least another token further, outside of parentheses, before a comma or
the keyword do.

Assignment An assignment differs from an invocation in that an equal sign exists, out-
side of parentheses, before a semicolon, the keywords end or else, or the end of

39

the file.

Listing 20 shows the resolver function for the last of these cases as an example.

private static Boolean IsAssignment ()

{
Scanner . ResetPeek ();
Token next;
Int32 level = 0;
while (true)
{
next = Scanner.Peek ();
if (next.kind == _leftPar)
level+-+;
if (next.kind == rightPar)
level ——;
if (((level == 0) && ((next.kind == semicolon) ||
(next.kind == end))) || (next.kind == _else) ||
(next.kind == EOF))
{
return false;
}
if ((level == 0) && (next.kind == _equals))
return true;
}
}

Listing 20: Implementation: Assignment Resolver

6.1.2. Attributed Grammar

The attributed grammar is only used for collecting information needed to build the
data structure objects (see Section 6.2). All further checks are then performed in these
objects.

6.2. Data Structures

The compiler frontend uses a number of classes and interfaces to represent the program
to be checked internally. In the first phase, the Coco/R-generated attributed grammer
(see Section 6.1.2) instantiates these data structures.

40

6.2.1. Units
Unit Classes

Figure 1 shows a class diagram for the classes used in representing the units of the
assembly to be compiled.

IEnumerable<FormalParameter e
ICopyable<FormalList> Assembly UnitVisibility UnitKind
R N Class Enum Enum
FormalList L) O 1unit
Class
units ILayeredObject Default Brand
/ IParameterizable Public ClassBrand
© IEnumerable<Expression> IStaticValue Visibility
e o N Class
UnitSpec ﬁ Unit ‘ Module
Class | Abstract Class i KindOfUnit
- | | = OrderedElement b
spec | |

o1

" Brand ‘ (ClassBrand ‘

P

p
Module ‘

Class
— Unit

Class Class Class
—b Unit — Unit — Unit

& & g \

(ModuleBrand ‘

Figure 1.: Class Diagram — Units

The most important object is the Unit class. For each unit found in the source code, an
instance of a derived class of Unit is created by a call to the abstract factory method
Unit.Create, specifying the kind of unit to create (a UnitKind enumeration value), the
visibility of the unit (a UnitVisibility value) and a UnitSpec object, which contains
the name of the unit, information about its formal parameters (see Section 6.2.3), as well
as the expressions defining any embedded units.

Units and Layers

Units are subdivided into layers, which need to be represented. In addition, for generic
units, it is necessary to evaluate the concrete units for all combinations of actual pa-
rameters used (called a generic instance from here on), because of cycle detection (see
Section 7.2.6). The nested classes in Unit displayed in Figure 2 serve this purpose.

In every unit object, a single StaticObject is instantiated that represents the static
layer of the unit. For generic units, an instance of GenericInstance is created for each
combination of actual parameters and used instead of the Unit object itself when accessed
from outside the unit (the unit cannot be accessed without actual parameters, except
for the static layer). For semantic checks of the unit itself, a default generic instance is
used, with the formal parameters substituted as actual ones. As with the static layer of
the unit itself, a SharedObject instance for the shared layer is created in each generic
instance, as well as a GenericStaticObject instance. The latter is, in fact, mostly a
proxy object for the StaticObject instance of the unit, which is needed for checking the

41

O 1unit
ILayeredObject
IParameterizable
IStaticValue

i Unit
| Abstract Class
|~ OrderedElement

| Nested Types

> Iunit
ILayeredObject

IStaticValue

GenericInstance
Class
—b OrderedElement

Nested Types

IUnit
IObject
IStaticvalue

Class
— OrderedElement

O 1unit
IObject

- \
GenericStaticInstance ‘

(Sharedobject ‘

Class
— OrderedElement

D Unit
IObject

IStaticValue

StaticObject {
Class ‘
~b OrderedElement !

PN - N

Q 10bject

Class

! [ThisObject H
—> OrderedElement

Figure 2.: Class Diagram — Nested Classes of Unit

actual parameters used during the semantic checking phase (see Chapter 9).

Assemblies

Each unit is added to an Assembly object, which checks for double unit declarations and
is used as the starting point for later phases. Originally, Assembly was implemented as a
static class. While this has subsequently been changed, only one assembly object exists
in Assembly.CurrentAssembly. If needed, only small modifications (mainly in the Unit
class) would be required to support multiple assemblies in a single compilation run.

6.2.2. Members
Member Classes

The classes used for representing members are depicted as a class diagram in Figure 3.

As with units, all member classes are built around a single abstract base class, Member.

42

(O TIToken

ICopyable<TokenUse> o ICopyable<PrePost> Layer MemberVisibility
Ve ~N Ve N Enum Enum
TokenUse RightTokenUses (* prepost
Class Class N
b SyntacticElement b SyntacticElement Static Default
TokenU Shared Private
— okentses \ﬁﬁ/ N Instance Public
/:\ © IElement
i r IContextMember | Layer
{ Member ‘}
... AbstractClass | Visibility S . N
onstraints | —> O | IUnit
3 y B Interface
A Unit —b IElement
T AN J
IToken IParameterizable
O IContextDataMember IContextDataMemberOrFunction ITokenMember IC Typ:
ARSI SORNRSRSSRRRRRRRSs 2o S m S ST m s y ~ Ve N\
| DataMember \ DataMemberOrFunction TokenMember NamedTypeMember
| Abstract Class | Abstract Class Class Class
i —b Member | —b Member —b Member —b Member
- L N y N
T T Parameters
INamedValue IVariable
E> INamedVFlue (P IVariable, IValueFunction IVariableFunction
() (;. (. e . - .
NamedValue Variable NamedValueOrValueFunction VariableOrVariableFunction
Class Class Class Class
—b DataMember —b DataMember —b DataMemberOrFunction —> DataMemberOrFunction
A8 J (8 J \ J S J
O TParameterizable O IEnumerable<FormalParameter>
r IContextRoutine ICopyable<FormalList>
P E - N
| Routine | Parameters FormalList
| Abstract Class I Class
! —b Member L)
(IVaIueFu{cﬂon C / IVanab\e%unct\on O IMethod 9 ICreator
y N P " \ ~ ~ p ~
ValueFunction VariableFunction Method Creator
Class Class Class Class
—b Routine —b Routine —b Routine — Routine
\ / A8 y A J A8 y

Figure 3.: Class Diagram — Members

However, constructors of the subclasses are used to create the objects instead of an ab-
stract factory method (except for DataMemberOrFunction, see below). To these con-
structors we pass the layer of the member (Layer enumeration value), its visibility
(MemberVisibility), and optional synchronization constraints (a PrePostList object,
shown as a collection association between Member and PrePost in Figure 3). Further-
more, depending on the type of member, a list of parameters (see Section 6.2.3), a type
expression, an initial value or type expression, and a body may be specified. The last
possibility is never actually used, as a member object is created as soon as the declaration
is found. If this is later discovered to be a definition, the body is assigned separately.

Assigning Members to Units

Each member is assigned to the containing unit using the Unit.AssignMember method.
Its behaviour depends on the kind of the unit and the layer of the member. Static
members are always added to the StaticObject instance. For non-generic units, instance
members are simply added to the member collection in the unit itself, while for generic
units, instance and shared members alike are added to a collection of member templates,

43

and the event MemberTemplateAdded is raised. This event is processed by all existing
GenericInstance objects and leads to the creation of a new instance of a subclass of
ConcretizedMember, a nested class of Member (each subclass of Member has its own nested
subclass of ConcretizedMember). This new member object is then added to either the
collection of members in the generic instance or its SharedObject instance, depending
on the layer.

It has previously been deemed possible to simply maintain all members in one collection
in the unit. However, as has been realized later in the implementation, name resolution
of member signatures must be performed separately for each combination of actual pa-
rameters, making the current solution outlined above necessary. Additionally, this has
turned out to be advantageous for name resolution in general.

Data Member Definitions — Function Declarations

A special case exists for data members and parameterless functions, as they are indistin-
guishable in certain instances (see Section 2.3.3).

The implementation uses DataMemberOrFunction and its subclasses to represent this spe-
cial case. Both NamedValueOrValueFunction and VariableOrVariableFunction con-
tain a static factory method Create that is used to instantiate each data member found
during syntax analysis. These methods check if it is possible to assert that the mem-
ber is either a data member or a function, in which case the corresponding class is used.
Otherwise, a new instance of the containing DataMemberOrFunction subclass is returned.

If, during name resolution, such an ambiguous member is used as a data member
(i.e., assigned to), only a flag is set to mark the member as a definition. We had
considered early in the implementation to replace the NamedValueOrValueFunction or
VariableOrVariableFunction instance with an instance of the correct member class.
However, in addition to being unnecessary, such an approach would have required the
excessive use of events to replace all existing references, and was thus deemed too com-
plicated.

6.2.3. Formal Parameter Lists

Formal parameter lists are used for generic units, routines, and named types. The class
diagram in Figure 4 shows the classes used to represent formal parameters.

Formal parameters are a straight-forward representation of the syntactic elements them-
selves. Note that synchronization constraints are not part of formal parameter lists, but
have their own collection class, PrePostList (see Section 6.2.2). This separation was
implemented because there are cases where formal parameter lists are needed without
synchronization constraints (for example generic units), and vice versa (for example pa-

44

O IEnumerable<FormalParameter> J; IElement

ICopyable<FormalList> ICopyable<FormalParameter>

FormalList | \ FormalParameter
Class " Abstract Class
|| formalparameterList { =5 SyntacticElement

O INamedType
Ve N\

FormalTypeParameter
Class
—b FormalParameter

Q 10bject

Class

FormalValueParameter
—b FormalParameter

Figure 4.: Class Diagram — Formal Parameter Lists

rameterless routines). Additionally, both element types are resolved separately, giving
no advantage to a combined data structure.

6.2.4. Routine Bodies and Statements

A class diagram for body and statement classes is shown in Figure 5.

Compared to units and members, routine bodies and statements are trivial. The only
interesting aspect are block statements (only if and when are supported in this imple-
mentation, no while). A BlockStatement object contains a list of ConditionalBody
instances, each containing a body, and each but at most one also containing a CondList
object, which represents the conditions for the block. In this way, the handling of a
routine body and the body in a block statement is completely transparent (which has to
be taken into account during name resolution through the use of different context classes;
see Section 7.1.2).

The Body class contains a list of statements simply appended in the order found in the
source file.

6.2.5. Expressions
Expression Classes

Expressions are the basis for name resolution. Wherever a reference to another element
is needed in the source code, an expression is used. Figure 6 provides an overview of the
used classes.

Most concrete expression classes correspond to elements in the syntax grammar and are
self-explanatory. However, several special cases are described below.

45

IEnumerably<Statement>
ICopyable<Body>

\[; ICopyable<Statement>

4 . P -
Statement i Body
Abstract Class S S Class
—b SyntacticElement statements {)
IObject
ILvalue
e " ~ Ve " \ e ~ ey o N
Assignment InvocationStatement ReturnStatement | LocalDataDefinition
Class Class Class | Abstract Class
— Statement — Statement — Statement | — Statement
o . J \ _ -

BlockStatementType
Enum

If
When

Ve
LocalNamedValue
Class
—b LocalDataDefinition

Class

Ve
LocalVariable
— LocalDataDefinition

J
o IEnumerable<ConditionalBody> o ICopyable<ConditionalBody>
N g N
BlockStatement ConditionalBody
Class Class
o | b Statement conditionalBodies body
& y

—

~ A

! condList

u lcnpyatj¢<condL\st>

CondList ‘

\[; ICopyable<Condition>
| Condition 1
| Abstract Class : —
| — SyntacticElement H conditions |

Class

y

P
AssignmentCondition
Class
—> Condition

Q 10bject

/

I .

TokenCondition
Class
— Condition

N

([AN ([
ValueCondition
Class
— Condition

N

Figure 5.: Class Diagram — Routine Bodies and Statements

Expressions and Defined Elements

Each expression defines a language element, for example a value or object, a type, or a
routine invocation. The Expression object for an expression contains the kinds of ele-
ments the expression may refer to, which depends on the context in which the expression
is used. This is usually set in the constructor, or a set-accessor for a property, of the
object containing the expression. For instance, a routine that has a result type sets the
Kinds property of its resultTypeExpression object to ElementKinds. Type.

This information is checked during name resolution and used to make sure that casts to
specific interfaces are safe. See Section 7.1.1 for detailed information.

Type Expressions

Expressions used as types have the following restrictions:

46

 1Copyable<Typetodier>

O TIToken
ICopyable<TokenUse>

~ \ p \
TypeModifier RightTokenUses TokenUse
Class Class
—» SyntacticElement —b SyntacticElement
ElementKinds ICopyable<Expression> —— TokenUses) =
i Y (0 "\ typeModifiers N
|, Expressjon T T i
Kinds | Abstract Class = =
| b SyntacticElement ExpressionBuilder
Y Sealed Class
————————————————————————— expressions.
operators
(P IEnumer{abledypeModme»
P > Vs \
| SimpleExpr ComplexExpression
| Abstract Class Class
| —b Expression —b Expression
Vs 4‘; \ i : """""""""" Ya n N N\ Ya \
MessageExpr BasicExpr LayerQualificationExpr PrefixExpr | Operator
Class Abstract Class Class Class | Abstract Class
—» SimpleExpr —b SimpleExpr —b SimpleExpr —b SimpleExpr op i
) | SSSSosscsce FANR N N 2 Associativity
actualParameters qualification
‘ LayerQualification OperatorAssociativity
p \ - \ s \ Enum Enum
InnerExpressionExpr LiteralExpr<T> IdentifierExpr
Class Class Class Shared Left
—b BasicExpr —b BasicExpr —» BasicExpr etatic Right
h > A 4 S / Module None

| act

Specialldentifier

Enum
O IEnumerable<IElement>
ICopyable<ActualList> None
p \ | "
->{ ActualList ; Tis
Class [(€ommmmmeeend ;"‘:‘WYPE
u

\

Figure 6.: Class Diagram — Expressions

e Such expressions (which can precede the assignment operator = in the lexical or-

dering) shall not contain the = operator except in parentheses.

e Such expressions shall access only units, named types, and literals. They shall not
access named values and variables or invoke routines.

The first restriction is handled by syntax analysis and not relevant here. The second
one, however, restricts the use of elements in the expression and thus all sub-expressions.
Therefore, an additional flag is available in the Expression class that indicates an ex-
pression being part of a type expression. This flag is automatically set if the kind of
elements for the expression is set to include types (but can also be set manually through
the IsTypeExpression property), and is propagated to all sub-expressions, including
actual parameter lists.

For details on the handling of the flag, see Section 7.2.5.

Type expressions may also contain type modifiers (see Section 2.6) always handled by
the Expression class itself.

47

Layer Qualifications

What is called layer qualifications here and handled by the LayerQualificationExpr
class is the possibility of using only the static layer of a unit or only the static and
shared layers of a class or class brand. This is similar to a message (and there is no
actual distinction in the original VooDo Kern grammar), but sufficiently different in the
implementation to warrant using a separate class.

Operators

Operator support in VooDo Kern is severely limited. Basically, operators are nothing
more than a special syntax for routine calls, with two exceptions. These are the ?
operator that denotes maybe-types (see Section 2.3.3), and the = operator that is used as
assignment as well as comparison operator depending on context. It was thus considered
to drop support for operators completely from this implementation.

PrefixExpression (for unary operators) and ComplexExpression (for binary operators)
are the expression classes used. The latter cannot be created directly. In order to support
different precedence and associativity, the ExpressionBuilder class was implemented,
which uses a trivial stack-based algorithm to build a hierarchy of ComplexExpression
objects.

48

7. Name Resolution

The first section in this chapter discusses the basic approach used for resolving names
in the compiler. The more general aspects, including cycle detection, are explained in
Section 7.2.

7.1. Name Resolution Basics

7.1.1. Language Elements

As shown in Section 6.2.5, each instance of Expression has assigned the kinds of elements
the expression may refer to. Figure 7 contains a class diagram showing the interface
hierarchy for the available element kinds and some additional information. As this is a
central part of the implementation, the interface members are included.

Note that the IUnit and IMember interfaces are not shown in this class diagram because
they are not directly relevant to name resolution. The additional properties and meth-
ods are used internally for the nested classes of Unit and member access classes (see
Section 7.1.3).

IElement

The IElement interface contains the property Kinds (a flag enumeration) used in place
of dynamic type checks to find out which of the sub-interfaces the type of an object
implements. This is needed because there are cases where a class implements one of the
interfaces without it being available in all instances or at all times (i.e., depending on
the state of the instance). An example for the first case would be the Unit class, which
implements IParameterizable, but only instances representing generic units have the
corresponding flag set in the Kinds property. Although such cases could be handled
using inheritance (i.e., a Unit class that does not implement IParameterizable and a
GenericUnit subclass), the second type (flags changing over time) cannot. Additionally,
this solution would increase the complexity of the class hierarchy in the compiler further,
which is already quite high.

The IsAvailableForType property works in conjunction with the IsTypeExpression

49

IElement ElementKinds
Interface Enum
Properties Unspecified
P N) . Object
IStaticvalue IvalabieForType { gel:. Bootean Wvalue
Interface sStatic { ge; J. Boolean Type
Kinds { get; ;. ElementKinds .
" Parameterizable
StaticValue { get, j. IStaticValue Kinds Invocation
Methods StaticValue
Methods LayeredObject
Equals(IStaticValue other): Boolean Token
curre void
y, Unit
_T Member
IObject IType IParameterizable IInvocation
Interface Interface Interface Interface
—b IElement —b IElement —> IElement —> IElement
Properties Properties Properties

Type { get; j. IType
Methods

Equals(Object other): Boolean
StateEquals(IObject ather): Boolean

Flags { get; j: TypeFlags
Tokens { get, . TokenValues
Methods

name, Context ac

ingContext): IMember

Get’ ing name, Context a

IsEquivalent(IType other, TypeCheckFiags flags): Boolean
IsSubtypeOr(IType other, TypeCheckFiags flags): Boolean

ingContext): I

ParameterCount { gel; j. Int32

{9e .

7 { gel; j: Li
Methods

IElement

Figure 7.: Class Diagram — Element Interfaces

Flags

ILValue

Interface ILayeredObject IToken

—P IObject Interface Interface
INamedType —b IElement —b IElement.

Methods Interface

ValueAssigned(): voia 2 Properties Properties
s Module { get; | IElement Token { get; j. ITokenMember
Shared { get; j. IElement Value { gel; j. Integer
BaseType { get; j. IType Static { get; j. IElement

Method:

TypeFlags o%s

Enum HasSublype(IType other, TypeCheckFlags flags): Boolean

None
Liftable
Modifiable

property of the Expression class (see Section 6.2.5). If it is true, the element can be
used in type expressions. Otherwise an error is reported when resolving the expression.

IsStatic and StaticValue are needed to handle statically determined expressions. If
IsStatic is true, StaticValue must return a valid instance of IStaticValue. In this
implementation, this is only used to assert equality between statically determined ex-
pressions since no code generation takes place, and thus no actual values are computed.

The PerformSemanticChecks method is used for semantic checks, for details refer to
Section 9.3.

IObject

I0bject is the interface for all elements that can be used as objects. This includes
for example class instances, classes and modules, accesses to named value and variable

members, local named values and variables, literals, and invocations of routines that have
a result type.

50

Every object in VooDo has a type, contained in the IType property. The Equals and
StateEquals methods are used for determining object equality, for the difference between
the two methods refer to Section 9.3. Equals overloads the default method in the C#
Object class, and does not override it. These methods must only be called after name
resolution is complete, as they depend on the information gathered there in some cases.

ILValue

This interface is used for all elements usable as l-values, that is, objects that can be as-
signed to. These are accesses to variable members and named value members without ini-
tialization, as well as local variables and uninitialized named values. The ValueAssigned
method is called when an assignment is resolved and used by the DataMemberOrFunction
class (see Section 6.2.2) to determine that it is to be used as a data member definition.

IType/INamedType

Every element usable as type implements the IType interface. At this point, only the
GetMember and GetToken methods are of interest, all other properties and methods are
used during semantic checking (see Section 9.1).

The GetMember and GetToken methods are used for accesses to the members of an in-
stance of a type. This is normally only relevant when accessing an IType instance through
the Type property of an IObject instance (see above). The need for two different meth-
ods results from the fact that token members are handled differently in a number of ways.
Especially, they cannot be accessed like other members.

The INamedType interface is used for named type member accesses and type parameters.
It only adds properties and methods relevant for semantic checks.

IParameterizable

Elements that take parameters do not directly implement the interface for the category
into which they fall. Instead, IParameterizable is used. This interface has three proper-
ties, two of which, ParameterCount and TypeParameterPositions, provide information
about the parameters the element takes. The last, ParameterizedKinds, corresponds
to the Kinds value of the element returned by the Parameterize method. This method
takes an Actuallist as parameter and is used to get the parameterized version of the
element.

ol

IInvocation

IInvocation is implemented by elements that can be invoked without returning a value
(i.e., methods without a result type). It is not used for routine calls that return a result,
which implement I0bject instead.

As no further information is needed for an invocation, this interface is only used as a
placeholder and does not contain any members. Note that an IInvocation instance
already contains all actual parameters needed, the unparameterized element implements
IParameterizable instead (see above).

ILayeredObject

The ILayeredObject interface is used in the LayerQualificationExpr class (see Sec-
tion 6.2.5). It defines objects that have layers, that is, the Unit and GenericInstance
classes, not the other layer classes. For this reason, ILayeredObject is separate from the
IUnit interface.

IToken

The IToken interface is straight-forward. It provides properties containing the token
member used, as well as the minimal value of the token.

7.1.2. Context

Resolving names is largely dependent on the context the name is used in. That is, the
same identifier used in one unit may point to a different element than in another unit.
This implementation uses the class Context and its subclasses for this task. A class
diagram is depicted in Figure 8.

Instances of these classes are created as needed in a hierarchical way. Each instance
of Context may contain a reference to a containing context. If an identifier is to be
resolved, the ResolveName or ResolveSpecialldentifier methods are used. If the
requested identifier cannot be found in the current context, the request is propagated to
the containing context.

Every context object contains a reference to a unit and a member, which may be null. The
context first used for name resolution is called the primary context, and it is propagated
through the context hierarchy during a resolution request. This makes it possible to
find out in which unit and member (if any) the access takes place at any point in the
hierarchy. An example where this knowledge is required would be checking the visibility

92

)
ContextExtension

Class Interface
—> IType

\ J

" 1unit ‘

3 containingContext .|
AR Extension N Unit
IObject Context
Interface Class

— IElement

IRoutine

Interface Interface ‘

InternalPrefix ————/ Member —» IMember
s T N / \ J

parameterContext Routine
N

e y \ p
(GlobalContext) (UnitContext MemberContext) >(ParameterContext BodyContext)
Class Class | Class Class

Class
—» Context —» Context —» Context —b Context — Context

e N
IContextMember
—b IMember

/ \ / AN / H \ / \ /

! parameterContext : formallist | actualParameters
O IEr For D) IElement>
ICopyable<FormalList> ICopyable<ActualList>

(FormalList ‘ " Actuallist ‘

Class Class

Figure 8.: Class Diagram — Context

of a unit member access.

For members that take parameters, the MemberContext instance for the member is the
containing context of the ParameterContext instance for the formal paramter list. How-
ever, for generic units, the parameter context uses the same containing context as the
unit context. The unit context has an additional reference to a ParameterContext used
in addition to the containing context when an identifier cannot be resolved directly. The
MemberContext class also contains such a reference used for creators (see Section 7.1.4).

Note that each ParameterContext instance contains a reference to a list of actual param-
eters. If not available, the formal parameters are substituted for the actual ones instead
(see Section 6.2.1).

Figure 9 shows the hierarchy of Context classes for the body of a method (with param-
eters) in a generic unit.

ContextExtension is needed for inheritance, for details refer to Section 8.2.

A special case exists for creators, see Section 7.1.4.

7.1.3. Member Accesses

This section deals with resolving the names of unit members. As with other types,
the GetMember and GetToken members of the IType interface are implemented for this
purpose. These methods are called either directly from a MessageExpr instance (see
Section 6.2.5) or a from a UnitContext object.

One aspect of member resolution is the fact that members are distributed over several
layers. Each layer class (see Section 6.2.1) implements IUnit, which is a sub-interface of

93

Ci globalContext: GlobalContext

U.staticObject.unitContext: UnitContext

i~ containingContext: Context
parameterContext: ParameterContext = null

u i ontext: ontext

- containingContext: Context

U, i sharedObject.unitContext: UnitContext

- containingContext: Context
parameterContext: ParameterContext ——!

U i unitContext: UnitContext

i~ containingContext: Context
parameterContext: ParameterContext = null

m.context: MemberContext

- containingContext: Context
parameterContext: ParameterContext = null

m.parameterContext: ParameterContext

- containingContext: Context

m.bodyContext: BodyContext

+~ containingContext: Context

Figure 9.: Example — Context Hierarchy

IType, and thus implements its own versions of GetMember and GetToken. These methods
look in all layer classes accessible to themselves. For example, the default generic instance
in a generic unit tries to find a member first in its own member collection, and then in
the ones of its shared layer and static layer.

It was considered early in the implementation that classes representing unit members (i.e.,
subclasses of Member and Member . ConcretizedMember) directly implement the necessary
IElement sub-interfaces (in addition to IMember). There are, however, the following
problems with this approach:

e VooDo does not allow write access to member variables except from within the
object containing the variable, that is, when it is possible to access the variable
using this (the expression internal member access is used from here on). This
implies that an access to a member variable is different depending on whether this
condition holds or not. Concretely, the element representing the variable must have
the value ElementKinds.LValue set only if accessed from within its own object.

e Routines and named types can be parameterizable. As type parameters are avail-
able, the complete member signature must be resolved separately for each combi-

o4

© 0 N U s W N

e e e e e
© 0 N O U R W N = O

nation of actual parameters. Objects representing the combination of member and
actual parameters are thus needed.

e To use distributed options, it is necessary to know the object to which a member
belongs, that is, the element used as prefix for the member access.

Therefore, we chose a different concept, using the abstract base class MemberAccess (a
nested class of Member) and a hierarchy of subclasses. For each access to a member in
the source code (be it an explicit access using MessageExpr or an implicit one using
IdentifierExpr, PrefixExpr, or ComplexExpr), a new access object is retrieved by
using the GetAccess method (of the IMember interface), containing information about
the accessing unit and member (if available), the element used as prefix to access the
member (or null if the access was implicit), a boolean value indicating if the access is
internal, and a list of actual parameters if required.

The reason for the need of a boolean value to indicate an internal access in addition to
the prefix arises from the handling of member signatures. For each member access object
created, the signature of the corresponding member is resolved anew. Any internal
member accesses inside the signature actually refer to members in the prefix of the
original member access. This is modelled by using a new Context object for resolving
the signature, which has the InternalPrefix property set to that prefix. Whenever this
property is set for a context in the hierarchy (it is propagated downwards if not set), any
internal member access objects are passed the prefix it holds. Listing 21 illustrates this.

class A is
static type T = {};

method m: T do ... end method;
end class;

class B is
var x: A = ...;

method n do
Vdr y: A.T;
y = x.m;

end I.n.ethod;

end class;

Listing 21: Example: Member Access

The member access to T (Line 4) for x.min B.n (Line 15) is internal, but uses the I0bject
instance for x as prefix.

An exception to the above are tokens, which are used directly as members, because the

95

need for a distinct member access class is not existent in that case.

7.1.4. Creators

Name resolution in creators has to be handled in a particular way, as creators are static or
shared routines, but have access to instance members, and an explicit this is available.

The context used for resolving names in a creator body is a normal BodyContext object.
However, its containing context is not the MemberContext instance of the creator, but a
special one. This, like a UnitContext object for a generic unit, contains an additional
reference to the ParameterContext instance of the creator, and its containing context
is the UnitContext instance for the class representing the instance layer of the unit.
Figure 10 shows the context hierarchy for a creator that takes parameters and is a
member of a generic unit.

C globalContext: GlobalContext

U.staticObject.unitContext: UnitContext

+ containingContext: Context
parameterContext: ParameterContext = null

1} i ontext: “ontext

- containingContext: Context

1] i sharedObject.unitContext: UnitContext

- containingContext: Context
parameterContext: ParameterContext ——

U i unitContext: UnitContext

- containingContext: Context
parameterContext: ParameterContext = null

c.context: MemberContext c.creatorContext: MemberContext

i~ containingContext: Context containingContext: Context
parameterContext: ParameterContext = null ontext: ParameterContext = null

c.parameterContext: ParameterContext c.bodyContext: BodyContext

- containingContext: Context - containingContext: Context

Figure 10.: Example — Creator Context Hierarchy

7.2. Name Resolution/Cycle Detection

Despite being anticipated as a small part of the implementation, cycle detection has
turned out to be the most complicated problem. A number of approaches were considered
and implemented in part until the current solution was found.

o6

7.2.1. Considered Approaches
Cycle Detection Separate from Name Resolution

The first basic approach was to implement name resolution by traversing the implicit
syntax tree with no consideration for cycles. This is obviously not correct and would lead
to an endless recursion of the compiler. However, it has been convenient for implementing
the basics of name resolution (see Section 7.1).

Name Resolution/Cycle Detection per Unit

Based on a previous version of [17], in this approach, each unit had to be handled
separately. Apart from that, the approach was basically similar to the following one,
including the two-phase concept, while being quite different in the actual implementation.

Global Two-Phase Name Resolution/Cycle Detection

After [17] had been changed to incorporate the current description of element order (see
Section 2.4), it became necessary to reimplement cycle detection. A two-phase approach
was considered, with the first phase containing the resolution of types (except in routine
bodies) and the second phase all the rest, with all types being available at that point.
This would have simplified the name resolution/cycle detection phase considerably.

However, it would have implied that no type expression accesses any object in a circular
way, especially any unit used as object. Without this restriction, there are no advantages
in using two phases.

Apart from the use of two different phases, the actual implementation of this approach
was very similar to the current one, as the name resolution methods were the same for
both phases, with only a parameter determining the current phase.

Global One-Phase Name Resolution/Cycle Detection

The current solution corresponds to a large extend to the description of the member
sequence, as presented in Section 2.4. There are, however, still a number of special cases
that require consideration.

o7

7.2.2. Ordered Elements

Cycle detection is based on the concept of ordered elements. These are elements (see Sec-
tion 7.1.1) upon which the logical order is defined. Thus, ordered elements are basically
units, layers of units, and members.

The abstract OrderedElement class is used as base class of ordered elements, and provides
the basic name resolution/cycle detection algorithm. It is shown in listings 22 and 23.

public abstract class OrderedElement

{

protected static readonly
Dictionary <OrderedElement , OrderedElement> incompleteElements =
new Dictionary <OrderedElement , OrderedElement >();

internal static void ResolvelncompleteElements ()

{
while (OrderedElement.incompleteElements.Count > 0)
foreach (OrderedElement element in
OrderedElement . incompleteElements . Values)
{
element . ResolveNames (true);
break ;
}
}
}
protected NameResolutionState nameResolutionState;

protected Boolean mustComplete;
protected abstract Boolean ResolveNames ();

protected abstract void HandleCyclicReference ();

Listing 22: Implementation: OrderedElement Class (1)

The most important part is the non-abstract ResolveNames method. Its parameter,
mustComplete, is true if the element must be finished before name resolution on the
calling one can continue, which implies that the element represented by the current
instance of OrderedElement comes before the one calling this method in the logical
order. Three cases can be distinguished for the state of the current element:

e Name resolution for the element has not been started yet. It is started using the
overridden ResolveNames method.

e Name resolution for the element is in progress. This implies a recursive call of this
method, meaning that a cycle has been detected. There are several sub-cases:

— mustComplete is true in both the previous and current call. This would mean

o8

public Boolean ResolveNames(Boolean mustComplete)

{
if (!OrderedElement.incompleteElements.ContainsKey (this))
OrderedElement . incompleteElements.Add(this , this);
Boolean completed = true;
switch (this.nameResolutionState)
{
case NameResolutionState.NotStarted:
this.mustComplete = mustComplete;
this.nameResolutionState = NameResolutionState. InProgress;
completed = this.ResolveNames ();
break ;
case NameResolutionState.InProgress:
if (this.mustComplete && mustComplete)
this.HandleCyclicReference ();
return false;
case NameResolutionState.Complete:
return true;
}
if (completed)
this.nameResolutionState = NameResolutionState.Complete;
OrderedElement . incompleteElements . Remove(this);
Assembly . CurrentAssembly . Ordering . Add(this);
}
else
this.nameResolutionState NameResolutionState . NotStarted ;
return completed;
}

Listing 23: Implementation: OrderedElement Class (2)

that the element must be finished before itself, that is, an illegal cycle has
been detected.

— In the previous call, mustComplete is false, but it is true now. This must
not happen, as it would imply the need to finish an element even though the
element depending on it need not be finished.

— mustComplete is false in this call. Independent of whether it was true before or
not, this means the current call is unnecessary and could only cause problems
because of recursion. It is thus aborted.

e Name resolution has been completed before. There is nothing left to do, so the

method is exited.

It is possible that ResolveNames exits even though name resolution of the element is not

99

complete, and that no later call exists because no other element depends on this one. For
this reason, a collection of unfinished elements is maintained, which can later be used to
make sure this phase has been completed for all elements.

There are two restrictions on methods that override the parameterless ResolveNames
method in OrderedElement:

e [t must be possible for the method to be started again if it is aborted, either by
using some sort of checkpoint concept or by being reentrant.

e [f mustComplete is false, it must not become true for any depending element.

7.2.3. Allowed Forward References

The term forward reference applies when an element references another element that
does not come before it in the logical sequence. Basically, forward references are handled
using the mustComplete parameter of the general ResolveNames method. If it is false,
the reference from the calling to the called element can be a forward reference.

Not all name resolution happens directly in the elements themselves, however. Thus,
other objects need to be informed about which references may be forward references.
This is done using the NameResolutionFlags enumeration, which includes the following
values:

TopLevelTypeIncomplete Is only significant if the expression it is passed to is a type
expression. Indicates that the reference to the type defined by the expression may
be a forward reference.

TypeAsParameterIncomplete This is passed to expressions defining embedded units and
modified to TopLevelTypeIncomplete for the actual parameter list, allowing the
use of recursive type parameters.

RoutineIncomplete Is used whenever an expression may reference a routine, if a recur-
sive call is valid at that point.

UnitIncomplete Indicates that a forward reference to a unit is valid (see Section 8.1).

ActiveTypeModifiers Is used to specify that active type modifiers are allowed at that
point. Does not have any influence on forward references.

7.2.4. Name Resolution in Units

For name resolution, the unit itself as well as its layers are considered ordered elements.
Name resolution normally starts with the unit itself (which is the instance layer if one

60

exists), except if invoked through a dependence. Table 4 shows how units and layers
depend on each other and on the respective members. A dependence indicates that the
ResolveNames method of the depending element calls the one of the element it depends
upon, with the mustComplete parameter set to true if its own was set to true also.

Element Depends on
Unit Static Layer

Embedded Instance Members
Unit (generic) Default Generic Instance

Generic Instance | Shared Layer

Embedded Instance Members
Shared Layer Static Layer

Embedded Shared Members
Formal Parameters

Shared Members

Static Layer Embedded Static Members
Static members

Table 4.: Unit and Layer Dependencies

Note that the unit does not depend on any instance members. This is because instance
members come after the unit in the logical order. Nevertheless, the ResolveNames method
of the unit calls the one of each instance member, but with mustComplete set to false
regardless of what it is set for itself. This ensures that every member is in fact resolved
eventually.

Shared members depend on the static layer, and instance members on the containing
unit, which is the instance layer in this case.

7.2.5. Name Resolution in Expressions
Parameters and Return Values

Expressions are resolved by calling the ResolveNames method of the Expression class.
This method takes three parameters:

context A Context object used for name resolution.
flags A NameResolutionFlags value (see above).

mustComplete A boolean value.

The flags and mustComplete parameters determine how cyclic references are handled.
If mustComplete is true, only cyclic references specified in flags are allowed to occur.

61

Otherwise no further checks are needed, and mustComplete is set to false for all calls to
the ResolveNames method of other elements.

The ResolveNames method of the Expression class returns a boolean value indicating
if name resolution has been completed successfully. The resolved element defined by the
expression can be found in the DefinedElement property.

There are three cases to be distinguished after the method returns:

e The DefinedElement property is set to null. In this case, the expression could not
be resolved. This can happen for a variety of reasons, for example an unknown
identifier has been found, or an object that is used as a prefix could not be resolved
completely.

e DefinedElement contains an element, but the return value of ResolveNames is
false. This means that name resolution is basically complete for the expression.
However, it could not be completed for the defined object. Depending on the value
of mustComplete and flags, this can mean that an error message has already been
printed.

e The return value is true. This implies that DefinedElement contains an element
and the ResolveNames method (if any) of that element has completed successfully.

How these cases are handled depends on the element referencing the expression.

Prefixes

Forward references are allowed for reading accesses to data members as well as routine
invocations if a safe prefiz is used. Safe prefixes do not contain this as well as units
(and static/shared layers thereof). This is also handled by the Expression class and its
subclasses.

Type Expressions

As explained in Section 6.2.5, expressions defining types are subject to restrictions.
Particularily, only certain other elements may be used in such expressions. In the
ResolveNames method, the IsTypeExpression flag described in the section mentioned
above is used. If true, as soon as the element is identified, its IsAvailableForType
property is checked. If false, an error is reported.

62

7.2.6. Resolution of Member Accesses

For resolving member accesses, several steps are needed:

1. The IObject element containing the member (respectively its type) is resolved.
2. The IMember instance for the member to be accessed is retrieved.
3. A member access object (see Section 7.1.3) is created.

4. The member access is resolved, which includes resolving the signature of the mem-
ber itself.

The last step is required, because the member may take type parameters on which other
parameters or the return value depend, so these have to be resolved for each member
access. For this reason, a new instance of ParameterContext is created, which allows
a list of actual parameters to be assigned. Whenever the name of a parameter is to be
resolved, the element of the corresponding actual parameter is returned instead.

For generic units, a similar concept is used, which implies that each distinct generic
instance, that is, each combination of actual parameters, is resolved separately, including
all unit signatures.

7.2.7. Recursive Routines

One special case for name resolution are recursive routines, which are specified in a way
to make sure no data member initialization depends recursively on itself by disallowing
forward references among routines if any data member is between the routines in the log-
ical sequence. The concepts outlined above cannot enforce this constraint, so a dedicated
algorithm was needed.

Each routine has two lists of other routines. The first (the direct list) contains routines
that may not be referenced, either directly or indirectly through another routine. The
second list (the indirect list) contains those routines that may not be referenced indirectly
via at least one data member. In addition, each data member has a list of routines not
to be referenced (directly or indirectly).

Following is an overview of the algorithm. @ and b are routines, z is a data member.
a — b denotes that a references b.

a— b e If bisin the direct list of a: Invalid recursion, output error and exit.

e Add a and all routines on its indirect list to the indirect list of b.

63

e Add all routines on the direct list of a to the direct list of b.
a— x e Add a and all routines on its direct and indirect lists to the list of z.

X — a e If a is in the list of z: Invalid recursion, output error and exit.

e Add all routines on the list of z to the direct list of a.

The operations are called in the ResolveNames method of the Expression class if the
defined and calling elements are routines or data members.

64

8. Inheritance

Inheritance or embedding in VooDo Kern is defined by copying all members of the em-
bedded class into the embedding class (see Section 2.5). This is to be done at the source
level, and not as binary code.

For the implementation, two approaches were considered:

e Members are not copied, but only references to the (already resolved) embedded
members are used.

e Actual copies of the embedded members are created (albeit not directly at source
level, but using the data structures created during syntax analysis).

The first approach seems more efficient at first glance. However, as the language is
specified under the assumption that the second variant is used, the actual implementation
is complex and has many issues. Especially, the fact that name resolution has to be
performed anew in the inheriting class negates any efficiency advantage. Thus, the second
approach has been used in the implementation.

8.1. Name Resolution

Embedded units and members are only resolved when needed, that is, either before the
first non-embedded member on the corresponding layer in the embedding unit is resolved
(for static and shared layers) or before that layer itself. The following steps are performed:

1. The expressions defining the embedded units are resolved. This is done only
once, usually before resolving the first static member. Note that the embed-
ded units themselves need not be resolved completely at this point (this is what
NameResolutionFlags.UnitIncomplete is used for, see Section 7.2.3).

2. For each embedded unit:

e The corresponding layer of the embedded unit is resolved.

e The members to be embedded are collected.

65

3. Embedded members are added to the unit as if found during syntax analysis, ba-
sically. See Section 8.4 for how substituted members are handled.

The IUnit interface defines a GetMembersToEmbed method that is used by the embedding
unit to retrieve a list of IMember objects for a specified layer. These are already copies
of the original members, with any modifications that are needed made.

8.2. Generic Units

Generic units have to be handled specially for embedding, as parameters of the embedded
unit need to be translated. In many cases, this is a simple name replacement, but some-
times, more complex expressions are used. Additionally, the name used for a parameter
in an embedded class may have a different meaning in the embedding class.

For this reason, the concept of context extensions is available. A context extension is a
translation table from names to expressions that can be assigned to a Context object (see
Section 7.1.2). It is possible to create chains of context extensions needed for multiple
levels of embedding.

If a context has an extension assigned, it first tries to find the name to be resolved in it.
If successfull, the attached expression is resolved. The context used for that is either the
one used for the containing (i.e., embedding) unit’s embed clause if the context extension
is the last in the chain, or an instance of Context that uses the former (directly or
indirectly) as containing context.

When creating a copy of a Member instance that is to be used as embedded member, a
Dictionary<String, Expression> object can be specified, which is used to construct
a context extension. This is later passed to the context for the embedded member on
creation.

Another special case exists if the actual parameters for a generic unit are statically
determined. In this case, all shared members are considered to be static members in-
stead. For simple accesses to unit members, this does not make much difference. When
embedding such a statically determined generic unit, however, all shared members ac-
tually become static members. To implement this, the GetMembersToEmbed method of
GenericInstance and SharedObject (see Section 6.2.1) check if their instance is stati-
cally determined whenever the members of the static or shared layer are requested, and
returns the correct and appropriately modified members.

66

8.3. Embedded Private Members

Even though not directly visible in the embedding class, private members have to be
embedded, because other non-private embedded members might depend on them. To
make sure there are no conflicts, private members are to be renamed on embedding.

Each Unit object has a unique identifier that is created when the object is instantiated
during syntax analysis. This identifier is appended to the name of any inherited private
member. For example, the private named value x in the unit A, which has the unique
identifier 7, would be named x_7 when embedded in another unit. This works recursively,
so if an already embedded private member is embedded again, another unit identifier is
appended.

Every embedded member contains a reference to its original, which allows retrieval of
the identifier of its unit. Therefore, the recursive method performing name translation
is defined by the IMember interface. Name resolution of members takes place in the
UnitContext class, which first checks if the primary context (see Section 7.1.2) has an
embedded member assigned. In this case, it uses the TranslatePrivateName method of
that member to get the name an embedded private member would have. If a member
with that name exists, it is returned. Otherwise, name resolution continues normally.

8.4. Substituted Members

Each Unit instance has, in addition to the collection holding instance members, if avail-
able, another collection of IMember objects containing all members in the unit, including
those on the static and shared layer. For each member that is embedded, this col-
lection is checked for a member with the same name. If such a member exists, its
AddSubstitutedMember method is used with the newly embedded member. Otherwise
the new member is itself added to this collection as well as the correct collection for its
layer.

For member templates (used with generic units, see Section 6.2.2), it is important that
all members of generic instances are informed when a substituted member is added
(because it is needed during name resolution). Therefore, the AddSubstitutedMember
method raises the event SubstitutedMemberAdded, which is handled by those member
copies.

Because of multiple inheritance, it is possible that a new member already has a sub-
stituted member, or that an embedded member with the same name already exists in
the collections. The AddSubstitutedMember method handles this by creating a new
EmbeddedMemberAccumulation instance (see below) and raising another event, Replaced,
which is handled by the unit as well as the layer object to which the member belongs.
These objects then remove the previous member from all relevant collections and add

67

the new member accumulation instead.

The check of whether a member can substitute another one or not is part of the semantic
checking phase, see Section 9.2.

8.5. Multiple Inheritance

VooDo fully supports multiple inheritance, that is, a unit can embed two or more other
units. As embedding of members is based on the member names, this can lead to problems
if members from different embedded units have the same name (see Section 2.5).

Multiple embedded members are handled by the EmbeddedMemberAccumulation class.
An instance is created as soon as a second member of the same name as an already
embedded member is embedded. Each object of this class contains two collections, one
for all embedded members with the same name, and another one for active members,
that is, members that could potentially substitute all others.

When a new member is added to an accumulation that already contains at least one
embedded member, it is checked for basic compatibility and whether it is to be active or
not. If the new member has a higher visibility, all previous active members are removed.
The same is true if all previous members are declarations and the new one is a definition.

A special case exists for DataMemberOrFunction members (see Section 6.2.2), for which
it is not known if they are declarations or definitions. Therefore, such members are kept
in the active member collection until the semantic checking phase, were this ambiguity
does not exist any longer.

68

9. Semantic Checks

What is called semantic checks here includes all those checks that need not (or in some
cases cannot) be performed during name resolution. Thus, this implementation uses a
third and last phase for these checks. The following assumptions can be made during
this phase:

e All expressions are resolved, all references are available.

e For every member it is known whether it is a declaration or definition, including
members represented by DataMemberOrFunction instances (see Section 6.2.2). This
is the case because all such members that have not been assigned to at some
point (which makes them data member definitions) can be asserted to be function
declarations.

Because of the first assumption, semantic checks can be implemented fairly easily by
traversing the syntax tree, which in this implementation does only exist implicitly. Thus,
all unit, member, and statement objects contain PerformSemanticChecks methods.

9.1. Basic Type Checking

9.1.1. Interfaces

Type checking is the central task of the semantic checking phase. It is necessary to be
able to determine if two types are equivalent, or if one is a subtype of the other. For
this reason, the IType interface (see section 7.1.1) defines two methods, IsEquivalent
and IsSubtypeOf. The INamedType class defines another method, HasSubtype. All these
methods take two parameters, the first being another IType instance, and the second a
TypeCheckFlags enumeration value (see below).

9.1.2. Order of Type Comparisons

Beside the default subtyping relationship that exists between a unit and its embedded
units, several special cases are defined (see Section 2.5). The type checking methods

69

have to take these cases into account by performing type comparisons in the correct
order to prevent endless recursion situations. Listing 24 shows the IsSubtypeOf and
IsEquivalent methods of the Unit class. Note that this is only used for non-generic
units, as for generic units, the unit itself is no type, and a generic instance is used
instead.

public Boolean IsEquivalent (IType other, TypeCheckFlags flags)

{
if (other == this)
return true;

if ((other is INamedType) &&
((INamedType) other).IsEquivalent (this, flags))
{

}

return false;

return true;

}

public Boolean IsSubtypeOf(IType other, TypeCheckFlags flags)

{

if (this.IsEquivalent (other, flags))
return true;

if (other is EmptyType)
return true;

if ((other is INamedType) &&
((INamedType) other).HasSubtype(this , flags))

return true;

if ((other is LiftedType) &&
((LiftedType) other).HasSubtype(this, flags))
return true;

if ((other is ModifiedType) &&
((ModifiedType) other).HasSubtype(this , flags))
return true;

if (other.IsEquivalent(this.staticObject , flags))
return true;

if (other is IUnit)
foreach (IUnit embeddedUnit in this.embeddedUnits)

if (embeddedUnit.IsSubtypeOf(other , flags))

return true;

}

return false;

Listing 24: Implementation: Type Checking Methods in Unit

70

As can be seen, in addition to INamedType, LiftedType and ModifiedType also contain
a HasSubtype method, which is needed, as shown in this example, for the type checking
to be invertible for these cases.

For an explanation of the TypeCheckingFlags value, see Modified Types below and Sec-
tion 9.3.1.

9.1.3. Named Types

Named types are a special case in that an equivalence can be defined, but is not always
visible. More specifically, named type member definitions contain a type value in addition
to the supertype that is also defined for declarations and type parameters. However,
because the value can change to a subtype through inheritance, this type value is only
available in the following cases:

e The access to the named type is internal, that is, from a member in the same
object, using either this as prefix or no prefix at all.

e The named type is statically determined, that is, is either at the static layer, or
at the shared layer in a generic instance with statically determined actual parame-
ters. Additionally, the prefix used for accessing the named type must be statically
determined.

In these cases, a type equivalence between the named type and its type value can be
asserted. Otherwise, only a subtype relation between the named type and any supertype
of its (implicitly or explicitly) specified supertype is available. The implementation of
this difference is trivial, as the member access class used, NamedTypeMemberAccess in
this case, knows the prefix and whether the access is internal, static, or neither of these
cases.

Another special case occurs when embedding named types, in that an overriding named
type member is seen as equivalent to the overridden member, but only when both are
used without prefix. The only case where this equivalence is used is the substitutability
check for members. This is required to allow the use named types in member signatures,
which would otherwise become invalid on embedding if the used named type member is
substituted.

9.1.4. Modified Types

Type checking for modified types is done separately for the base type and any type
modifiers. One problem, however, is the fact that the real base type need not necessarily

71

= o=

= O © 00 N O Uk W N

be known. Listing 25 shows an example where the ModifiedType instance has an already
modified type as its base type, and a subtyping relationship must be determined.

class A is
token t;
type T = A[t];
method m(p: A[t:2]) do
1: T[t] = p;
end method;

end class;

Listing 25: Example: Base Type of Modified Type Unknown

Rather than requiring to be able to access the type value of the named type and using
a loop to get to the real base type, the BaseTypeOnly flag of the TypeCheckingFlags
enumeration is used. As an example, this is illustrated by means of the IsEquivalent
method of the ModifiedType class in Listing 26. The IsSubtypeOf and HasSubtype
methods are similar. For information about the token equality check see Section 9.3.1.

9.2. Substituted Members

For checking if a member may override another one, the IsSubstitutableBy method de-
fined in the IMember interface is used. Its implementation for the different member classes
is straight-forward as the example in Listing 27 shows for the Member and NamedValue
classes (the former is needed for the latter).

9.3. Distributed Options

Distributed options are a main feature of VooDo. The implementation of the functionality
subset (see Section 11.2.2) contained in this work has proven to be less complicated than
originally anticipated.

9.3.1. Types and Tokens

The IType interface defines a property Tokens, which is an instance of the TokenValues
class. This class is used to manage the tokens a type has. Beside constructors for
creating instances using the tokens available in a unit, a list of type modifiers, or a list
of synchronization constraints, it contains methods for combining instances (for example
to apply type modifiers) and for checking if type modifiers are available.

72

public Boolean IsEquivalent(IType other, TypeCheckFlags flags)

{
if (other == this)
return true;

if ((other is INamedType) &&

((INamedType) other).IsEquivalent (this, flags))
{
return true;
}
if (other is ModifiedType)
{

if (this.baseType.IsEquivalent (((ModifiedType) other).baseType,
TypeCheckFlags . BaseTypeOnly) &&
(T.Flags.IsSet (flags , TypeCheckFlags.BaseTypeOnly) ||
this.Tokens. Equals(other . Tokens,
T.Flags.IsSet (flags , TypeCheckFlags.CompareExpectedTokens))))

return true;

else if (this.baseType.IsEquivalent(other, TypeCheckFlags.BaseTypeOnly)
&& (T.Flags.IsSet (flags , TypeCheckFlags.BaseTypeOnly) ||
this . Tokens.Equals(other.Tokens,
T.Flags.IsSet (flags , TypeCheckFlags.CompareExpectedTokens))))

{
}

return false;

return true;

Listing 26: Implementation: IsEquivalent Method in ModifiedType

TokenValues supports what shall be called expected tokens, that is, token values to the
right of -> in type modifiers and synchronization constraints. The methods used for
checking availability take a boolean parameter indicating whether these expected values
should also be checked or not. This is what the CheckExpectedTokens value of the
TypeCheckFlags enumeration is for in the type checking methods (see Section 9.1.4).

The public interface of the class is shown in Figure 11.

9.3.2. State Information for Objects

Normally, the type of an object is fixed throughout the program. Because of distributed
options, however, this is only true globally, not locally within an expression or routine
body. Therefore, the current state (that is, type) of each object for which it has changed
must be kept during type checking.

The States class is used for this function. It holds the current type of any object required
and allows its modification through a number of methods. Additionally, checks for type

73

class Member : OrderedElement, IElement, IContextMember

{

public virtual Boolean IsSubstitutableBy (IMember other)

{
if ((this. Visibility == MemberVisibility . Public) &&
(other. Visibility != MemberVisibility . Public))

return false;

if ((this.layer == Layer.Static) && (other.layer != Layer.Static))
return false;
if ((this.layer == Layer.Shared) && (other.layer == Layer.Instance))

return false;
if (!this.Tokens.Implies(other.Tokens, true))
return false;

return true;

}

class NamedValue : DataMember, [NamedValue

{

public override Boolean IsSubstitutableBy (IMember other)

{
if (!base.IsSubstitutableBy (other))
return false;

if ((other is INamedValue) &&
((INamedValue) other).Type.IsSubtypeOf(this.type,
TypeCheckFlags . None))

return true;

if ((other is IValueFunction) &&
I'((IValueFunction) other).HasParameters &&
((I'ValueFunction) other).ResultType.IsSubtypeOf(this.type,
TypeCheckFlags .None))

{
}

return false;

return true;

Listing 27: Implementation: IsSubstitutableBy Method in Member and NamedValue

74

Q ICopyable<TokenValues>

p
TokenValues
Class

Methods

AddRightTokens(TokenValues tokens): TokenValues
AddTokens(TokenValues tokens): TokenValues

pplyModi modifiers):
Combine(TokenValues other): void
Copy(Boolean unresolved): TokenValues
Equals(TokenValues other, Boolean checkExpected): Boolean
HasExpected(): Boolean
Implies(TokenValues other, Boolean checkExpected): Boolean
RemoveTokens(TokenValues tokens): TokenValues

ing> irrelevantTokens, Boolean uselnitialTokens)

Typ: P
PrePostList syndl

TokenValues(IEnumerable<IToken> tokens, IEnumerable<IToken> rightTokens)

Figure 11.: Public Interface — TokenValues

equality and subtyping relations can be performed directly. There are also methods for
creating copies of a States object and combining multiple instances into one, which is
needed for block statements (see below). In addition to the types of objects, the class
can also hold a TokenValues object for this.

Figure 12 contains the public interface for States.

s
States
Class

Properties

ThisTokens { get; set; }: TokenValues
Methods

AddRightTokens(IObject _object, TokenValues tokens): void

AddTokens(IObject _object, TokenValues tokens): void

CheckExpectedTokens(IObject _object): void

Ched TObject _object, T tokens): void

Combine(List<States> statesList, Boolean includeThis): States

Copy(): States

IsSubtypeOfType(IType type, IObject _object): Boolean

IsTypeSubtypeOf(IObject _object, IType type): Boolean

RemoveTokens(IObject _object, TokenValues tokens): void
States()

Figure 12.: Public Interface — States

It is possible for two or more I0bject instances to represent the same object (for example,
two member accesses to the same named value member). These instances should then
be treated the same in some cases, but different in others. For example, when using a
variable member as an actual parameter in two different places, the two actual parameter
lists cannot be considered the same, because the variable value could have changed in
the meantime. However, any state information about the variable would be known to
have changed and thus can be kept. The inverse example would be two calls to a value
function (with no parameters or the same actual parameters), which can be assumed to

return the same object, but no state information needs to be saved, as it cannot have
changed.

For this reason, the I0Object interface defines two methods, Equals and StateEquals
(see Section 7.1.1). The first one is used when object identity must be guaranteed, while

the second one is used when it needs be asserted that the objects are the same regarding
state information.

75

9.3.3. Routine Bodies

In the PerformSemanticChecks method of a routine, a new States object is created
and a TokenValues instance for the synchronization constraints of the routine (if any) is
assigned to its ThisTokens property. The states object is then passed to the body.

The PerformSemanticChecks method of the body calls the ones of the contained state-
ments in order. Following is a list of cases where actions regarding distributed options
are taken and what these actions are:

e In local data definitions and assignments, it is checked if the assigned value is a
subtype of the type of the named value or variable assigned to. If yes, the tokens
of that type are removed from the assigned value. Otherwise, an error is printed.

e Whenever a member is accessed, the following steps take place:

The current tokens of the prefix used (or this if none) are checked to conform
to the synchronization constraints of the member.

If the member is a routine that takes parameters, each actual parameter is
checked for the tokens required by the formal parameters, and those tokens
are removed.

The tokens required by the synchronization constraints are removed from the
prefix (or this if none).

If the member is a routine that takes parameters, the token values to the
right of -> in the type modifiers of each formal parameter are added to the
corresponding actual parameter. If a type modifier is not active, the tokens
specified are assumed to be present at the left and right of ->.

The right tokens in the synchronization constraints are added to the prefix
(or this). As above, the tokens specified in the synchronization constraints
are used if there is no ->.

e For block statements, the following actions are taken for each block:

A copy of the current (outer) States instance is created.

Any tokens in synchronization constraints for the block are removed from
this. However, if a token is not available, no error is reported, and the token
value is set to zero. This is because block statements dynamically check for
the availability of tokens.

The PerformSemanticChecks method for the inner block is invoked.

Tokens to the right of -> (or tokens if there is no ->) in the synchronization
constraints are added to this.

76

After checking all blocks this way, the newly created States objects are combined
by taking the minimum value of each token for each object known. If an uncon-
ditional block (that is, an else-block without a condition) is part of the block
statement, the previously current States object is not included; otherwise it is.

e Return statements that contain a value are handled just like assignments, with the
type against which the assigned value is checked being the routine result type.

e Any return statement implies that synchronization constraints for all enclosing
blocks must be checked. Therefore, whenever a return statement is encountered,
an event is raised that contains a copy of the current States object. This event is
handled by block statements and the routine itself, making sure all synchronization
constraints are satisfied.

9.3.4. Elements

When preforming semantic checks in routine bodies and other parts of members, it is
necessary to propagate the checks to contained elements. For example, an IObject
instance can be a function call containing actual parameters, and these parameters have
to be checked using the current States object. Therefore, the IElement interface (see
Section 7.1.1) defines a PerformSemanticChecks method that takes a States instance
as parameter.

7

Part Il1l.

Summary

78

10. Statistical Information

Table 5 contains information about the types, lines of code, and hours of implementation
time, organized roughly by the implementation phases described in the Part II (compare
Table 3 in Section 3.2). Types includes classes, interfaces, structures, enumerations, and
delegates, also counting nested types. The number of types for the individual phases sees
each type as belonging to only one phase. However, most types are relevant in more than
one phase, and many even in the complete compiler frontend, except for syntax analysis.

Note that all numbers except the overall number of types and lines of code are rough
estimates.

Part Types | Lines of Code | Hours
Syntax Analysis 5 1100 20
Data Structures 45 6000 40
Name Resolution/Cycle Detection 60 3500 200
Inheritance 25 1500 30
Semantic Checks 45 1000 80
Framework 2 4500 30
Overall 182 17600 400

Table 5.: Statistical Information

Name resolution/cycle detection has proven to be the most complex phase, as can be
seen especially from the implementation time needed. The other phases correspond
approximately to the original anticipations, with the exception of the semantic checks
perhaps, which has proven less time consuming than estimated, as the features that have
been implemented were decidedly less problematic than expected.

Overall, we can note that the compiler frontend is quite complex. Especially the more
than 180 types, most of which are interdependent in some way, underline that fact.

Tables 6 through 10 give an overview of all types in the implementation and provide
some additional information. Not included are the types generated by Coco/R.

79

9 4 € T v uonugseyedreso1 S[qeLIEA[R20]
g 4 14 T v uonyrugs(gele e201 on[e\pawe N[ed0T
€ 4 It g g i4 juswelely + uorruya(Jee redoT
9 4 € T € adxggoiseg T,adxFeto3r|
€ T T T 9¢ T 9T 8 T i4 T,[eI091T
€ T ST 9 T € odA T pojyr
8 14 € T 14 € adxpgerdurg adxguorjyeoyireng)iokery
L 4 I 4 1 Juewage)g JUOUI9) RIS UOIJEIOAUT
v T T T T 0 EERAALENNG | sS1yueArgeIul
0T 14 <Q (4 T € adxnporseqg adxguoissaadxfisuuy
(45 € 4 14 € € adxgporseyqg adxgreyryuapy
g T 14 0 xojuon 1xXeju0)RqO[D)
LT 4 TT 4 € I9jourRIe J[RULIO] I9jourRIe JONn|[ReA [RULIO]
(44 C ias 9 id JojowIeIR J[eULIO 1ejewrere JodA 1 rewioq
T T 14 14 i 9 € 14 JULWL[FO130RIUAS + I9)oUIRIR J[RULIO]
LT 4 LT g € € ISTI[eWI0]
T T 0 + sSerq
9 T € 4 0 Jep[mguoisseadxy
1e 14 91 9 L T JUOWHOIPORIUAS + uotssoxdxs
[1 z z 0 103eIadQ 1ojeredQuoryerjueuodxy
1T L T e 0 + SI01I5]
[4 T T 6T T ct 9 € odA 1 Aydwry
1474 T °r4 €T <] L SS900Y UOIJR[NWNIDY IDUIS N POPPaqUI «—
S1T 14 T €9 qe i4s T 6 UOIJR[NUWNDIIY IOqUID]\ POPPoquIF
cT T 9 14 € i SSOO0 Y I9qUIS A $S900Y UOI30UNJI)IDqUIDJARIe ([+—
ze T ST ot € L I9(UIS]APOZI12I0U0)) UOT11OUNJ IO IDQUIDJA[BIR (JPIZI}DIOUOD) «—
(474 14 €T i € (4 L JoqUIDIA + uo11OUNJIOIDqUIS I RIR (]
(45 T 9 14 € 14 SS920VY IaqUIL A SS900yIoqUIDIN €Y R (] «—
€T T (4 g g g ISqUIS I POZI}RI0UO0D) I9qUIDINRIR (] POZI}DIOUOD) «—
L€ 4 61 11 S 4 S IoquIL] + ToquoN IR (]
(028 1 g 4 z L QUINOY POZI}IOUO)) 101e9.1)POZIDIOUO0D) +—
91 14 6 14 T T L [unoy 101e91))
8 14 € T 14 0 UOTSUDIXFHIXIUOD)
1€ € 8T] [+ 0 9X29U0D)
Vi 4 L T v T JSTIPUOD
ST T 14 L T v T Apogreuornpuo))
9 14 € T T JUOW[HOIPORIUAS -+ uoI}IPuUO))
1T 14 v 14 € 1 uorssexdxy uorssaxdxgxorduroy)
L 1 sl fel 0 103eIad(103erodQuostredwo))
9 T € 14 9 Jruf) puergsser)
14 T 14 T 9 Hupn sse[D
8 T gq 14 9 upn) puerg
8 T v T 14 0 3Xo3uo) 1xequoApog
14 T 14 [€ € € Apog
71 14 8 T € € juowaje}sg JueweleISHO0[g
14 4 € adxgperdurg + adxgporseq
€c 4 Tt g g € uonrpuon UOI}IPUODJUSWUSISS Y
6 14 € 14 T juowele}s JuewuIIssy
[T T 8T T 6 € g 0 Aquuessy
5 T 4 k4 0 109er0d 10geradQUONIPPY
14 € [v 4 € ISII[eN3OYy
G T z C 0 103eI0d () 103e19d ()SSE00Y
g Q U &l = sse[) ose owre
- I T A S e g N
& = 7] =2 el o H =} 17} =2 s} (% &r ol o
& & ¢ & g @[8 & ¢ & ¢ =@ |88 g
= 2 (3 =S = 2 o a a 8
s " g g °) - -
o @ 3 o M
Il y %

SI0qUIOIN O19elS

SISqUISIA] 9oU®B)SU]

Type Information — Classes (1)

Table 6.

80

91 14 L € v T JUDWOFO130RIUAS 1oyTpoNodAT,
Ve S ST 4 T SON[BAUDNOT,
(44 [4 6 9 S € LLCLsE) (C BIERLRI VN 9S8 UNOT,
LT T 6 9 T S I9qUIDIN POZI32I0U0) I9qUID [\ USN O], POZIJDIOUO) «—
L€ C 8T (4 <] T <] I9qUISIA IO UIDA[USYO],
T T 9 1,911 JSTTUANOT,
L [4 € T T T uorrpuoyn UOTJIPUODHUINOT,
L T 9 0 ueNOoT,
14 T T 0 =+ JUeWLHI1)0RIUAG
14 T T T T 0 s3ayjuanyg sS1yjuaasalelg
€ T 14 T saredwopAyirenbsgioalqQre—
91 14 1T T 14 T 0 so9eI1g
14 T 4 L T € T JuoWL[FO130vIULS + JuswageIg
11 4 9 € € uotssoudxy | + 1dxygerdurg
S T T T 4 1 T 1 asegsSuryjeguoryeniddy s8uryjeg
g T T T 4 T T 1 asegsSurjjoguoryeniddy s8uryjeg
g T T T 14 T T T asegs3uryjeguorjenriddy s3uryjeg
Vi T 9 € id i4 SS90D Y I UIDIN UOIJBDOAUTOUTINOY +—
o¥ T 44 1T 9 9 I9QUID A POZI1OIDU0D) SQUIINOY PIZIJIOUOY) —
09 14 (4% LT 6 14 9 I9qUIDIA + auIINOY
P 14 € 14 T juswelels UL U} R)GUINGOY
L € [4 4 T T 0 SOOINO0SY
L € [4 4 T T 0 SOOINO0SY
L € [4 14 T T 0 S92IN0S9Y
4 [4 0 + wersSolg
9 14 S T L T,9s1T 9S1T3S0J21J
a1 14 L € € T LESIU Sl (c BICELLLINS sodeiq
8 4 € 1 4 € 1dxgardurg 1dxgxyard
6 14 € T € 0 IxXo3uo) 1X9jU0)I9)9UrRIe J
€ T T T 9 T € [4 0 + JUSWL[HPIIdPIO
T T Tt T v 14 14 0 + 10rerad(
4 T T €c T a1 L 4 NN
e 1 1 1 6 UOTIOUN IO IDUID]\ BYR (] POZIISIDU0D) uoTPOUNJoN[RA IQPN[RA POUIR N POZI}DIOU0)) —
T T 8 14 (<] T T 6 uornoun IO IdquaNeIe uorjouUNJon[eA IQON[eA powe N
¢ 1 1 1 9 I9qUID R R (] POZIOIDUOD) ON[BA POWIE N POZI}2IOUO)) «—
6 14 [+ 14 T 9 IaquaNeIe(anpeA powreN
14 T (4 9 9 i SS900 Y IoqUID A $S900y IoquIdINod A T, poure N «—
[4 T [ot 9 9 I9QUID A POZI}OIDU0D) Toqua o dA T, pouue N PazI1aI0uo) «—
8 T v 91 9 14 9 I9qUISIA Toquua Ao dA T powre N
<] T 4 4 0 10rerod(103eradQuorjeddiynin
L T i 14 9 Hun pueIgenpoN
g T S T 9 Hun SNpPON
4 [4 Le 14 Vi L 14 € odAT,payIpoIN
I T T T 2 QUIINOY PAZI}2IdU0)) PO PRZI}DIOUOD) —
6 (4 [14 T L [uIInoYy POYISIN
6 14 € T € € adxygardurg adxrje8esso
¥ T T T T 0 sSryjueay SBIYIULAF IO QU
L [4 € T T 0 }xo3u0n 9X93U0) IDUIS A
14 T 11 L 9 14 JULWR[H PIdpI + SSODDVY IS UIDTA «—
€9 T T ge LT 6 € JULWR[HPoIdpiI + I9QUISA[PRZIDIDUO) «—
9L 14 (4 v LT i 14 € JuULWR[HPoIdpI) + I9qUIDIA
G T 4 z 0 10gerad 10gerad(oidorg
= gl ! = sse ose awre
<] < @ 5 o [N x] B @ = ° o & = a4
g 5 g 8 g8 o |B 7 g g g @ [g8|%= g
= = o o = = o o8 Q a
a 2] ok a 17 = — @ o+
g 7 g ® M @
sl m %

SIDQUIDIN O13e}S

SI9qUISA 9oUR)SUT

Type Information — Classes (2)

Table 7.

81

€ 1 1 T 6 uoI3jouUNJIOIDqUIDJA IR ([POZI3210U0)) UOoI3OUNO[qRIIBRA I)O[(RIIRA POZI}RIOUO) «+—
T T 8 4 g T T 6 UOIOUNJIQISqUIDINRYR (] UOTOUNR[RIIRA IO RLIRA
€ T 1 T L QUIINOY PazIeIouo)) UOI}OUNJO[(RIIRA POZI}DIOUO) «—
6 4 g 4 1) sunnoy uonounI[qeIIe
7 1 z 1 9 JIaquIaNRIR(IPOZI}RIOUOD) S[qRIIBRA POZI}2I0UO0) «—
43 4) € T 9 IoqueNeIed S[qerre)
¢ 1 1 1 L QUIINOY PazI}aIduo)) uo130UNJONn[RA POZI32I0U0)) —
ot 4 9 4 T L surnoy UoIOUNIINTRA
6 4 4 T 4 T uorIpuo) UOIIPUODON[BA
LT T 8 < € 4 JUSWDHO1POBIUAG oadgrun
) < I T 0 3x09U0D) 1x93UOD U
g1 T 8 g T 4 399(qOSsIy L —
99 T 8¢ 0 L g JUSWI[HPIIIPIO 109fqOo1eIg—
99 T 8¢ 0 2 S JUSWI[HPOIIIPIO 199(qOPoIRYS-O0UR)SUOLIOUDL) ¢—
o] T € 0C T i4 JUSWI[HPOIIIPIO 399(q 21181 SO1IOU) +90URISUDLIDUDI D) —
€8 LI § 2 (A 4 g JUSWS[HPOIOPIO 90URISUDLIDUID) —
4 4 €11 1 T 65 €€ 61 € 9 JUOWd[FPaIOPIO | + un
o @5 qQ =2z 9 9 o ¥ Q z ol) z | 5 sse[D osed | awreN
S 4 ¢ & 25 < < g %] %) =% o
[}) B & g =) e 5 & g = 2 o @
5 =2 2 5 % &|§ &2 2 = 7 & |§|5 g
2 7 & <] e a = & g o 14 a Q. © o
= = o o+ = <l o o Q Q
a 7] & a 7 o =] e &+
mv w mf 7] <
o]
= =
i 2

SI9qUIDIN O19e}S

SI9QUUIDJN 9OURISUT

Type Information — Classes (3)

Table 8.

82

Declarations
8
3
5| 8
o8, -
L~ 5} 9 + Il
318 % &8 ¢
« = @ > 2
Name m % = <] o
IContextDataMember 4
IContextDataMemberOrFunction 6
IContextMember 2 3 3 6
IContextNamedTypeMember 4
IContextRoutine 4
IContextTokenMember 4
ICopyable‘l 0 1 1
ICreator 3
IDataMember 2 4 8 12
IDataMemberOrFunction 4
IElement 0 4 5 9
IInvocation 1
ILayeredObject 1 3 3 6
ILValue 2 1 1
IMember 1 10 22 1 33
IMemberAccess 1 2 3 5
IMethod 3
INamedType 2 1 2 3
INamedTypeMember 2 6 6 12
INamedValue 3
IObject 1 1 3 4
IParameterizable 1 3 4 7
IRoutine 2 6 8 14
IStaticValue 0 1 1
IToken 1 2 2 4
ITokenMember 2 3 4 7
IType 1 2 6 8
IUnit 2 13 18 31
IValueFunction 3
IVariable 3
IVariableFunction 3

Table 9.: Type Information — Interfaces

Name
BlockStatementType
DataAccessKind
ElementKinds

Layer
LayerQualification
MemberKind
MemberType
MemberVisibility
NameResolutionFlags
NameResolutionState
OperatorAssociativity
ReturnCode
Specialldentifier
SynchronizationConstraints
TokenValuesSource
TypeCheckFlags
TypeFlags
TypeModifierKind
UnitKind
UnitVisibility

RO W W W W W WO WO R W WS e N Values

Table 10.: Type Information — Enumerations

83

11. Future Work

This chapter describes the necessary work to get a full compiler for VooDo Kern.

11.1. Changes to the Language

The VooDo language is not completely finalized, so there may be changes to the language
specification that would have to be incorporated into the compiler. On the other hand,
these modifications are expected to be in the details and should not require excessive
revisions of the existing codebase.

11.2. Implementation of Remaining Features

This section lists the features not included in the current implementation.

11.2.1. Basic Data Types

To fully support the various literals, base types, that is, Integer, Float, and String,
have to be implemented. The same is true for a boolean data type to check conditions
in block statements for having the correct type.

11.2.2. Distributed Options
The following functionality is needed for complete support of distributed options:

e Dependent options and alternative type modifiers.
e Alternative synchronization constraints.

e Special handling of equality comparisons in block statements.

All of these features are anticipated to be implementable in a straight-forward way,
without the need to revise large amounts of the existing work.

84

11.2.3. Miscellaneous Features
While-Loops

There is currently no support for loops of any kind. while-loops as specified in the
language would thus have to be implemented.

Semantic Checks

A number of non-critical semantic checks are expected to be easy to implement:

Checks on whether data members are correctly initialized or not.

The uniqueness-constraint on write accesses and state-dependent read accesses,
which would provide a way of ensuring atomic accesses to data members.

e Member access and side effect safety of functions (see section 2.3.3).

Checks for level-safe variable functions in the conditions of when-blocks.

11.3. Code Generator

The most important, but also most extensive part left to be implemented for a com-
plete compiler is a code generation module, which could either directly output binary
code, or code in a different programming language that can then be translated using the
appropriate compiler.

Additional features in the frontend depending upon and supporting code generation:

e The import statement and the repository management needed.

e Cross-assembly visibility checks.

85

12. Conclusion

VooDo is an experimental object-oriented programming language that includes a large
number of features, especially concerning the type system. While most of those are
known from other languages, VooDo is special in that it combines all those features in
one language. Additionally, there are new concepts, most prominently distributed options,
which are used for statically checking synchronization. As the complete language is fairly
complex, a scaled-down version called VooDo Kern was used as basis for this work.

It is to be anticipated that a compiler for the VooDo language is fairly complex, most
importantly as a result of the needed type checking mechanisms.

The focus of this work has been the implementation of a compiler frontend for VooDo
Kern. Additionally, several small changes to the language have been made. The fron-
tend has been implemented using the C# programming language and Coco/R parser
generator.

As has been shown in Part II, developing a compiler for VooDo Kern is a complex task,
as anticipated. The main problems, however, are not to be found in the implementation
of the semantic checks. Rather, name resolution and cycle detection have turned out
to be the most difficult part. Together, name resolution, cycle detection, and inheri-
tance, while anticipated to make up around twenty percent of the implementation work,
have accounted for more than half of it. Semantic checks are an important part of the
implementation and should not be underestimated, especially if all features are to be
supported. Still, the actual complexity of this part is significantly less than expected.

As the current implementation has been developed with an emphasis on flexibility and the
use of clean object-oriented methods, it should not be too difficult to add the additional
functionality described in Chapter 11. Hopefully, the compiler frontend developed in the
course of this work can provide a basis for a complete VooDo compiler, or at least help
in its realization.

86

Part V.

Appendix

87

A. List of Figures, Tables, and

Figures
1. Class Diagram — Units
2. Class Diagram — Nested Classes of Unit
3. Class Diagram — Members
4. Class Diagram — Formal Parameter Lists
5. Class Diagram — Routine Bodies and Statements
6. Class Diagram — Expressions
7. Class Diagram — Element Interfaces
8. Class Diagram — Context
9. Example — Context Hierarchy

10. Example — Creator Context Hierarchy
11. Public Interface — TokenValues
12. Public Interface — States
Tables
1. Units Summary
2. Units as Objects
3. Anticipated Proportions of Stages
4. Unit and Layer Dependencies
5. Statistical Information
6. Type Information — Classes (1)
7. Type Information — Classes (2)
8. Type Information — Classes (3)
9. Type Information — Interfaces
10. Type Information — Enumerations
Listings

1. VooDo Kern: Generic Stack
2. VooDo Kern: Layers
3. VooDo Kern: Brand

88

Listings

VooDo Kern: Module 13

VooDo Kern: Named Types 16
VooDo Kern: Tokens 17
VooDo Kern: Negative Token Value 18
VooDo Kern: if-Statement 19
VooDo Kern: Invalid Cycle 20
VooDo Kern: Options 25
VooDo Kern: Synchronization Constraints 26
VooDo Kern: Active Type Modifiers 26
VooDo Kern: Synchronization Constraints in Conditional Statement . . . 27
Example: Covariant Parameters (Invalid) 32
Example: Use of Covariant Parameters (Invalid) 33
Example: Named Types and Covariant Parameters 33
Example: Use of Named Types and Covariant Parameters 33
Example: Non-Trivial Invalid Cycle 35
Example: Lifted Type 36
Implementation: Assignment Resolver 40
Example: Member Access 99
Implementation: OrderedElement Class (1) 58
Implementation: OrderedElement Class (2) 59
Implementation: Type Checking Methods in Unit 70
Example: Base Type of Modified Type Unknown 72
Implementation: IsEquivalent Method in ModifiedType 73

Implementation: IsSubstitutableBy Method in Member and NamedValue 74

89

B. Explanation of Figures

The following elements are used in the class diagrams contained in this work:

Name
Sk A class.

O Interface_1
Interface_2

Name A class that is a sub-class of another and implements two
Class :
e interfaces.
Name |
s § An abstract class.
Name
Sl RS A sealed class.
{ Name
{ Abstract Class
* properties E An abstract class containing a read-only property, a read-
| Property 1{get; }:TL | write property, an abstract method without parameters and
3 Property_2 { get; set; }: T2 i X
| Methods ; no return type, and a constructor with one parameter.

i Abstract_Method(): void
Name(T3 Parameter)

90

Name
Interface
— Base_If_1, Base_If_2

An interface with two base-interfaces.

Name
Enum

An enumeration.

Name
Enum

Value_1
Value_2

An enumeration with values shown.

name

An association for a field that always contains exactly one
instance of the type pointed at.

Name

An association for a property.

Name

An association for an abstract property.

An association for a field that may be empty /null.

name

A collection association for a field that always contains at
least one element of the type pointed at.

Name

A collection association for a property that may be empty,
that is, be null or contain no elements.

A subtyping relationship. The class or interface pointed at
is a base-class or base-interface of the one at the beginning.

91

For object hierarchies, these elements are used:

Name: Type

Member_1 Al'l ObJ ect.
Member_2

A reference to an object. The member at the beginning (line)
contains a reference to the object at the end (block).

92

Bibliography

1

2]

13l

4]

15]

6]

7]

18]

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman: Compilers. Addison Wesley,
January 1985, ISBN 0-20110-194-7.

Bracha, Gilad, Martin Odersky, David Stoutamire, and Philip Wadler: Making the
future safe for the past: Adding genericity to the java programming language. In 13th
Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA 98), Vancouver, BC, Canada, October 1998.
http://www.cis.unisa.edu.au/ pizza/gj/Documents/#gj-oopsla.

Canning, Peter, William Cook, Walter Hill, Walter Olthoff, and John C.
Mitchell: F-bounded polymorphism for object-oriented programming. In FPCA
’89: Proceedings of the fourth international conference on Functional program-
ming languages and computer architecture, pages 273-280, New York, NY, USA,
1989. ACM Press, ISBN 0-89791-328-0. http://webcourse.cs.technion.ac.il/
236801/Winter2004-2005/ho/WCFiles/p273-canning.pdf.

Chambers, Craig: Object-oriented multi-methods in cecil. In ECOOP 92 Furopean
Conference on Object-Oriented Programming, Proceedings, number 615 in LNCS,
Utrecht, The Netherlands, June/July 1992. Springer-Verlag. http://www-plan.cs.
colorado.edu/diwan/class-papers/cecil-oo-mm. pdf.

Dijkstra, Edsger W.: The structure of the “THE”-multiprogramming system. In SOSP
’67: Proceedings of the first ACM symposium on Operating System Principles, pages
10.1-10.6, New York, NY, USA, 1967. ACM Press.

Dijkstra, Edsger W.: Cooperating sequential processes. In The Origin of Concurrent
Programming: From Semaphores to Remote Procedure Calls, pages 65-138, New
York, NY, USA, 2002. Springer-Verlag New York, Inc., ISBN 0-387-95401-5.

Dijkstra, Edsger W.: Hierarchical ordering of sequential processes. In The Origin
of Concurrent Programming: From Semaphores to Remote Procedure Calls, pages
198-227, New York, NY, USA, 2002. Springer-Verlag New York, Inc., ISBN 0-387-
95401-5.

Flanagan, David: Java in a Nutshell. O’Reilly & Associates, March 2005, ISBN 0-
59600-773-6.

93

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha: The Java Language Speci-
fication, Second Edition. Addision-Wesley, June 2000, ISBN 0-201-31008-2. http:
//java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html.

Meyer, Bertrand: FEiffel: The Language. Prentice Hall, 2nd edition, 1992.

Meyer, Bertrand: Object-Oriented Software Construction. Sams, 2nd edition, May
1997, ISBN 0-136-29155-4.

Mossenbock, Hanspeter: Coco/R for various languages - Online Documentation.
http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/.

Mossenbdck, Hanspeter: A generator for production quality compilers. In CC 90:
Proceedings of the third international workshop on Compiler compilers, pages 42-55,
New York, NY, USA, 1991. Springer-Verlag New York, Inc., ISBN 0-387-53669-8.

Puntigam, Franz: Concurrent Object-Oriented Programming with Process Types. Der
Andere Verlag, Osnabriick, Germany, 2000.

Puntigam, Franz: Typsysteme. Skriptum zur gleichnamigen Vorlesung, Techni-
sche Universitat Wien, Institut fiir Computersprachen, Arbeitsgruppe Programmier-
sprachen und Ubersetzerbau, Argentinierstraffe 8, A-1040 Wien, Osterreich, 2001.
http://www.complang.tuwien.ac.at/franz/typsysteme.html.

Puntigam, Franz: Synchronization with type variables. In Workshop on Object-
oriented Language Engineering for the Post-Java Era, Darmstadt, Germany, July
2003. http://www.complang.tuwien.ac.at/franz/papers/Punt03b.ps.gz.

Puntigam, Franz: VOO-DO Language Specification (Kern—Draft). Technical report,
Vienna University of Technology, Institute of Computer Languages, Compilers and
Languages Group, Argentinierstrafse 8, A-1040 Vienna, Austria, 2005.

Quintana, Julio David: Getting to know Mono. Linux Journal, 2003(111):4, July
2003, ISSN 1075-3583.

Reynolds, John C.: Types, abstraction, and parametric polymorphism. In Informa-
tion Processing 83, pages 513-523, Amsterdam, The Netherlands, 1983. Elsevier
Science Publishers B.V. (North-Holland).

Wirth, Niklaus E.: Compiler Construction. Addison Wesley, July 1996, ISBN 0-
20140-353-6.

ECMA International, Rue du Rhoéne 114, CH-1204 Geneva, Switzer-
land: C%# Language Specification, 2nd edition, December 2002. http:
//www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf,
Standard ECMA-334 (= ISO/IEC 23270:2003).

94

[22] International Organization for Standardization, 1, Rue de Varembé, Case postale 56,
CH-1211 Geneva 20, Switzerland: ISO/IEC 14882:2003: Programming languages —
C++, October 2003.

[23] Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399, USA: C#
Version 2.0 Specification, May 2004. http://download.microsoft.com/download/
8/1/6/81682478-4018-48fe-9ebe-£87a44af3db9/SpecificationVer2.doc.

95

